Mister Exam

Other calculators

Integral of ln(5x+6) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 4/5               
  /                
 |                 
 |  log(5*x + 6) dx
 |                 
/                  
0                  
045log(5x+6)dx\int\limits_{0}^{\frac{4}{5}} \log{\left(5 x + 6 \right)}\, dx
Integral(log(5*x + 6), (x, 0, 4/5))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=5x+6u = 5 x + 6.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      log(u)5du\int \frac{\log{\left(u \right)}}{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(u)du=log(u)du5\int \log{\left(u \right)}\, du = \frac{\int \log{\left(u \right)}\, du}{5}

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=log(u)u{\left(u \right)} = \log{\left(u \right)} and let dv(u)=1\operatorname{dv}{\left(u \right)} = 1.

          Then du(u)=1u\operatorname{du}{\left(u \right)} = \frac{1}{u}.

          To find v(u)v{\left(u \right)}:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          Now evaluate the sub-integral.

        2. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        So, the result is: ulog(u)5u5\frac{u \log{\left(u \right)}}{5} - \frac{u}{5}

      Now substitute uu back in:

      x+(5x+6)log(5x+6)565- x + \frac{\left(5 x + 6\right) \log{\left(5 x + 6 \right)}}{5} - \frac{6}{5}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(5x+6)u{\left(x \right)} = \log{\left(5 x + 6 \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

      Then du(x)=55x+6\operatorname{du}{\left(x \right)} = \frac{5}{5 x + 6}.

      To find v(x)v{\left(x \right)}:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      5x5x+6dx=5x5x+6dx\int \frac{5 x}{5 x + 6}\, dx = 5 \int \frac{x}{5 x + 6}\, dx

      1. Rewrite the integrand:

        x5x+6=1565(5x+6)\frac{x}{5 x + 6} = \frac{1}{5} - \frac{6}{5 \left(5 x + 6\right)}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          15dx=x5\int \frac{1}{5}\, dx = \frac{x}{5}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (65(5x+6))dx=615x+6dx5\int \left(- \frac{6}{5 \left(5 x + 6\right)}\right)\, dx = - \frac{6 \int \frac{1}{5 x + 6}\, dx}{5}

          1. Let u=5x+6u = 5 x + 6.

            Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

            15udu\int \frac{1}{5 u}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              1udu=1udu5\int \frac{1}{u}\, du = \frac{\int \frac{1}{u}\, du}{5}

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              So, the result is: log(u)5\frac{\log{\left(u \right)}}{5}

            Now substitute uu back in:

            log(5x+6)5\frac{\log{\left(5 x + 6 \right)}}{5}

          So, the result is: 6log(5x+6)25- \frac{6 \log{\left(5 x + 6 \right)}}{25}

        The result is: x56log(5x+6)25\frac{x}{5} - \frac{6 \log{\left(5 x + 6 \right)}}{25}

      So, the result is: x6log(5x+6)5x - \frac{6 \log{\left(5 x + 6 \right)}}{5}

  2. Now simplify:

    x+(5x+6)log(5x+6)565- x + \frac{\left(5 x + 6\right) \log{\left(5 x + 6 \right)}}{5} - \frac{6}{5}

  3. Add the constant of integration:

    x+(5x+6)log(5x+6)565+constant- x + \frac{\left(5 x + 6\right) \log{\left(5 x + 6 \right)}}{5} - \frac{6}{5}+ \mathrm{constant}


The answer is:

x+(5x+6)log(5x+6)565+constant- x + \frac{\left(5 x + 6\right) \log{\left(5 x + 6 \right)}}{5} - \frac{6}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                      
 |                     6           (5*x + 6)*log(5*x + 6)
 | log(5*x + 6) dx = - - + C - x + ----------------------
 |                     5                     5           
/                                                        
log(5x+6)dx=Cx+(5x+6)log(5x+6)565\int \log{\left(5 x + 6 \right)}\, dx = C - x + \frac{\left(5 x + 6\right) \log{\left(5 x + 6 \right)}}{5} - \frac{6}{5}
The graph
0.000.800.100.200.300.400.500.600.7004
The answer [src]
  4               6*log(6)
- - + 2*log(10) - --------
  5                  5    
6log(6)545+2log(10)- \frac{6 \log{\left(6 \right)}}{5} - \frac{4}{5} + 2 \log{\left(10 \right)}
=
=
  4               6*log(6)
- - + 2*log(10) - --------
  5                  5    
6log(6)545+2log(10)- \frac{6 \log{\left(6 \right)}}{5} - \frac{4}{5} + 2 \log{\left(10 \right)}
-4/5 + 2*log(10) - 6*log(6)/5
Numerical answer [src]
1.65505882291443
1.65505882291443

    Use the examples entering the upper and lower limits of integration.