Mister Exam

Integral of ln(3x)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  log(3*x)   
 |  -------- dx
 |     x       
 |             
/              
0              
01log(3x)xdx\int\limits_{0}^{1} \frac{\log{\left(3 x \right)}}{x}\, dx
Integral(log(3*x)/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(3x)u = \log{\left(3 x \right)}.

      Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

      udu\int u\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        udu=u22\int u\, du = \frac{u^{2}}{2}

      Now substitute uu back in:

      log(3x)22\frac{\log{\left(3 x \right)}^{2}}{2}

    Method #2

    1. Rewrite the integrand:

      log(3x)x=log(x)+log(3)x\frac{\log{\left(3 x \right)}}{x} = \frac{\log{\left(x \right)} + \log{\left(3 \right)}}{x}

    2. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (log(1u)+log(3)u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)} + \log{\left(3 \right)}}{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(1u)+log(3)udu=log(1u)+log(3)udu\int \frac{\log{\left(\frac{1}{u} \right)} + \log{\left(3 \right)}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)} + \log{\left(3 \right)}}{u}\, du

        1. Let u=log(1u)+log(3)u = \log{\left(\frac{1}{u} \right)} + \log{\left(3 \right)}.

          Then let du=duudu = - \frac{du}{u} and substitute du- du:

          (u)du\int \left(- u\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            udu=udu\int u\, du = - \int u\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            So, the result is: u22- \frac{u^{2}}{2}

          Now substitute uu back in:

          (log(1u)+log(3))22- \frac{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(3 \right)}\right)^{2}}{2}

        So, the result is: (log(1u)+log(3))22\frac{\left(\log{\left(\frac{1}{u} \right)} + \log{\left(3 \right)}\right)^{2}}{2}

      Now substitute uu back in:

      (log(x)+log(3))22\frac{\left(\log{\left(x \right)} + \log{\left(3 \right)}\right)^{2}}{2}

    Method #3

    1. Rewrite the integrand:

      log(3x)x=log(x)x+log(3)x\frac{\log{\left(3 x \right)}}{x} = \frac{\log{\left(x \right)}}{x} + \frac{\log{\left(3 \right)}}{x}

    2. Integrate term-by-term:

      1. Let u=1xu = \frac{1}{x}.

        Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

        (log(1u)u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)}}{u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          log(1u)udu=log(1u)udu\int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du

          1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

            Then let du=duudu = - \frac{du}{u} and substitute du- du:

            (u)du\int \left(- u\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              udu=udu\int u\, du = - \int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: u22- \frac{u^{2}}{2}

            Now substitute uu back in:

            log(1u)22- \frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

          So, the result is: log(1u)22\frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

        Now substitute uu back in:

        log(x)22\frac{\log{\left(x \right)}^{2}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(3)xdx=log(3)1xdx\int \frac{\log{\left(3 \right)}}{x}\, dx = \log{\left(3 \right)} \int \frac{1}{x}\, dx

        1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

        So, the result is: log(3)log(x)\log{\left(3 \right)} \log{\left(x \right)}

      The result is: log(x)22+log(3)log(x)\frac{\log{\left(x \right)}^{2}}{2} + \log{\left(3 \right)} \log{\left(x \right)}

  2. Add the constant of integration:

    log(3x)22+constant\frac{\log{\left(3 x \right)}^{2}}{2}+ \mathrm{constant}


The answer is:

log(3x)22+constant\frac{\log{\left(3 x \right)}^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                      2     
 | log(3*x)          log (3*x)
 | -------- dx = C + ---------
 |    x                  2    
 |                            
/                             
log(3x)xdx=C+log(3x)22\int \frac{\log{\left(3 x \right)}}{x}\, dx = C + \frac{\log{\left(3 x \right)}^{2}}{2}
The answer [src]
-oo
-\infty
=
=
-oo
-\infty
-oo
Numerical answer [src]
-923.525557479663
-923.525557479663

    Use the examples entering the upper and lower limits of integration.