Integral of ln(3x)/x dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=log(3x).
Then let du=xdx and substitute du:
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
Now substitute u back in:
2log(3x)2
Method #2
-
Rewrite the integrand:
xlog(3x)=xlog(x)+log(3)
-
Let u=x1.
Then let du=−x2dx and substitute −du:
∫(−ulog(u1)+log(3))du
-
The integral of a constant times a function is the constant times the integral of the function:
∫ulog(u1)+log(3)du=−∫ulog(u1)+log(3)du
-
Let u=log(u1)+log(3).
Then let du=−udu and substitute −du:
∫(−u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2(log(u1)+log(3))2
So, the result is: 2(log(u1)+log(3))2
Now substitute u back in:
2(log(x)+log(3))2
Method #3
-
Rewrite the integrand:
xlog(3x)=xlog(x)+xlog(3)
-
Integrate term-by-term:
-
Let u=x1.
Then let du=−x2dx and substitute −du:
∫(−ulog(u1))du
-
The integral of a constant times a function is the constant times the integral of the function:
∫ulog(u1)du=−∫ulog(u1)du
-
Let u=log(u1).
Then let du=−udu and substitute −du:
∫(−u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2log(u1)2
So, the result is: 2log(u1)2
Now substitute u back in:
2log(x)2
-
The integral of a constant times a function is the constant times the integral of the function:
∫xlog(3)dx=log(3)∫x1dx
-
The integral of x1 is log(x).
So, the result is: log(3)log(x)
The result is: 2log(x)2+log(3)log(x)
-
Add the constant of integration:
2log(3x)2+constant
The answer is:
2log(3x)2+constant
The answer (Indefinite)
[src]
/
| 2
| log(3*x) log (3*x)
| -------- dx = C + ---------
| x 2
|
/
∫xlog(3x)dx=C+2log(3x)2
Use the examples entering the upper and lower limits of integration.