Mister Exam

Other calculators

Integral of ((x^5-2x)*ln3x)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  / 5      \            
 |  \x  - 2*x/*log(3*x)   
 |  ------------------- dx
 |           x            
 |                        
/                         
3                         
31(x52x)log(3x)xdx\int\limits_{3}^{1} \frac{\left(x^{5} - 2 x\right) \log{\left(3 x \right)}}{x}\, dx
Integral(((x^5 - 2*x)*log(3*x))/x, (x, 3, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute dudu:

      2u4log(1u)+2u4log(3)log(1u)log(3)u6du\int \frac{2 u^{4} \log{\left(\frac{1}{u} \right)} + 2 u^{4} \log{\left(3 \right)} - \log{\left(\frac{1}{u} \right)} - \log{\left(3 \right)}}{u^{6}}\, du

      1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

        Then let du=duudu = - \frac{du}{u} and substitute dudu:

        (ue5u2ueu+e5ulog(3)2eulog(3))du\int \left(u e^{5 u} - 2 u e^{u} + e^{5 u} \log{\left(3 \right)} - 2 e^{u} \log{\left(3 \right)}\right)\, du

        1. Integrate term-by-term:

          1. Use integration by parts:

            udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

            Let u(u)=uu{\left(u \right)} = u and let dv(u)=e5u\operatorname{dv}{\left(u \right)} = e^{5 u}.

            Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

            To find v(u)v{\left(u \right)}:

            1. Let u=5uu = 5 u.

              Then let du=5dudu = 5 du and substitute du5\frac{du}{5}:

              eu5du\int \frac{e^{u}}{5}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu5\frac{e^{u}}{5}

              Now substitute uu back in:

              e5u5\frac{e^{5 u}}{5}

            Now evaluate the sub-integral.

          2. The integral of a constant times a function is the constant times the integral of the function:

            e5u5du=e5udu5\int \frac{e^{5 u}}{5}\, du = \frac{\int e^{5 u}\, du}{5}

            1. Let u=5uu = 5 u.

              Then let du=5dudu = 5 du and substitute du5\frac{du}{5}:

              eu5du\int \frac{e^{u}}{5}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu5\frac{e^{u}}{5}

              Now substitute uu back in:

              e5u5\frac{e^{5 u}}{5}

            So, the result is: e5u25\frac{e^{5 u}}{25}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (2ueu)du=2ueudu\int \left(- 2 u e^{u}\right)\, du = - 2 \int u e^{u}\, du

            1. Use integration by parts:

              udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

              Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

              Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

              To find v(u)v{\left(u \right)}:

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              Now evaluate the sub-integral.

            2. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: 2ueu+2eu- 2 u e^{u} + 2 e^{u}

          1. The integral of a constant times a function is the constant times the integral of the function:

            e5ulog(3)du=log(3)e5udu\int e^{5 u} \log{\left(3 \right)}\, du = \log{\left(3 \right)} \int e^{5 u}\, du

            1. Let u=5uu = 5 u.

              Then let du=5dudu = 5 du and substitute du5\frac{du}{5}:

              eu5du\int \frac{e^{u}}{5}\, du

              1. The integral of a constant times a function is the constant times the integral of the function:

                False\text{False}

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                So, the result is: eu5\frac{e^{u}}{5}

              Now substitute uu back in:

              e5u5\frac{e^{5 u}}{5}

            So, the result is: e5ulog(3)5\frac{e^{5 u} \log{\left(3 \right)}}{5}

          1. The integral of a constant times a function is the constant times the integral of the function:

            (2eulog(3))du=2log(3)eudu\int \left(- 2 e^{u} \log{\left(3 \right)}\right)\, du = - 2 \log{\left(3 \right)} \int e^{u}\, du

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: 2eulog(3)- 2 e^{u} \log{\left(3 \right)}

          The result is: ue5u52ueue5u25+e5ulog(3)52eulog(3)+2eu\frac{u e^{5 u}}{5} - 2 u e^{u} - \frac{e^{5 u}}{25} + \frac{e^{5 u} \log{\left(3 \right)}}{5} - 2 e^{u} \log{\left(3 \right)} + 2 e^{u}

        Now substitute uu back in:

        2log(1u)u2log(3)u+2u+log(1u)5u5125u5+log(3)5u5- \frac{2 \log{\left(\frac{1}{u} \right)}}{u} - \frac{2 \log{\left(3 \right)}}{u} + \frac{2}{u} + \frac{\log{\left(\frac{1}{u} \right)}}{5 u^{5}} - \frac{1}{25 u^{5}} + \frac{\log{\left(3 \right)}}{5 u^{5}}

      Now substitute uu back in:

      x5log(x)5x525+x5log(3)52xlog(x)2xlog(3)+2x\frac{x^{5} \log{\left(x \right)}}{5} - \frac{x^{5}}{25} + \frac{x^{5} \log{\left(3 \right)}}{5} - 2 x \log{\left(x \right)} - 2 x \log{\left(3 \right)} + 2 x

    Method #2

    1. Rewrite the integrand:

      (x52x)log(3x)x=x4log(x)+x4log(3)2log(x)2log(3)\frac{\left(x^{5} - 2 x\right) \log{\left(3 x \right)}}{x} = x^{4} \log{\left(x \right)} + x^{4} \log{\left(3 \right)} - 2 \log{\left(x \right)} - 2 \log{\left(3 \right)}

    2. Integrate term-by-term:

      1. Let u=log(x)u = \log{\left(x \right)}.

        Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

        ue5udu\int u e^{5 u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e5u\operatorname{dv}{\left(u \right)} = e^{5 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=5uu = 5 u.

            Then let du=5dudu = 5 du and substitute du5\frac{du}{5}:

            eu5du\int \frac{e^{u}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu5\frac{e^{u}}{5}

            Now substitute uu back in:

            e5u5\frac{e^{5 u}}{5}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e5u5du=e5udu5\int \frac{e^{5 u}}{5}\, du = \frac{\int e^{5 u}\, du}{5}

          1. Let u=5uu = 5 u.

            Then let du=5dudu = 5 du and substitute du5\frac{du}{5}:

            eu5du\int \frac{e^{u}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu5\frac{e^{u}}{5}

            Now substitute uu back in:

            e5u5\frac{e^{5 u}}{5}

          So, the result is: e5u25\frac{e^{5 u}}{25}

        Now substitute uu back in:

        x5log(x)5x525\frac{x^{5} \log{\left(x \right)}}{5} - \frac{x^{5}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        x4log(3)dx=log(3)x4dx\int x^{4} \log{\left(3 \right)}\, dx = \log{\left(3 \right)} \int x^{4}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

        So, the result is: x5log(3)5\frac{x^{5} \log{\left(3 \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2log(x))dx=2log(x)dx\int \left(- 2 \log{\left(x \right)}\right)\, dx = - 2 \int \log{\left(x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

          Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

          To find v(x)v{\left(x \right)}:

          1. The integral of a constant is the constant times the variable of integration:

            1dx=x\int 1\, dx = x

          Now evaluate the sub-integral.

        2. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        So, the result is: 2xlog(x)+2x- 2 x \log{\left(x \right)} + 2 x

      1. The integral of a constant is the constant times the variable of integration:

        (2log(3))dx=2xlog(3)\int \left(- 2 \log{\left(3 \right)}\right)\, dx = - 2 x \log{\left(3 \right)}

      The result is: x5log(x)5x525+x5log(3)52xlog(x)2xlog(3)+2x\frac{x^{5} \log{\left(x \right)}}{5} - \frac{x^{5}}{25} + \frac{x^{5} \log{\left(3 \right)}}{5} - 2 x \log{\left(x \right)} - 2 x \log{\left(3 \right)} + 2 x

    Method #3

    1. Rewrite the integrand:

      (x52x)log(3x)x=x4log(x)+x4log(3)2log(x)2log(3)\frac{\left(x^{5} - 2 x\right) \log{\left(3 x \right)}}{x} = x^{4} \log{\left(x \right)} + x^{4} \log{\left(3 \right)} - 2 \log{\left(x \right)} - 2 \log{\left(3 \right)}

    2. Integrate term-by-term:

      1. Let u=log(x)u = \log{\left(x \right)}.

        Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

        ue5udu\int u e^{5 u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e5u\operatorname{dv}{\left(u \right)} = e^{5 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=5uu = 5 u.

            Then let du=5dudu = 5 du and substitute du5\frac{du}{5}:

            eu5du\int \frac{e^{u}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu5\frac{e^{u}}{5}

            Now substitute uu back in:

            e5u5\frac{e^{5 u}}{5}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e5u5du=e5udu5\int \frac{e^{5 u}}{5}\, du = \frac{\int e^{5 u}\, du}{5}

          1. Let u=5uu = 5 u.

            Then let du=5dudu = 5 du and substitute du5\frac{du}{5}:

            eu5du\int \frac{e^{u}}{5}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu5\frac{e^{u}}{5}

            Now substitute uu back in:

            e5u5\frac{e^{5 u}}{5}

          So, the result is: e5u25\frac{e^{5 u}}{25}

        Now substitute uu back in:

        x5log(x)5x525\frac{x^{5} \log{\left(x \right)}}{5} - \frac{x^{5}}{25}

      1. The integral of a constant times a function is the constant times the integral of the function:

        x4log(3)dx=log(3)x4dx\int x^{4} \log{\left(3 \right)}\, dx = \log{\left(3 \right)} \int x^{4}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

        So, the result is: x5log(3)5\frac{x^{5} \log{\left(3 \right)}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2log(x))dx=2log(x)dx\int \left(- 2 \log{\left(x \right)}\right)\, dx = - 2 \int \log{\left(x \right)}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

          Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

          To find v(x)v{\left(x \right)}:

          1. The integral of a constant is the constant times the variable of integration:

            1dx=x\int 1\, dx = x

          Now evaluate the sub-integral.

        2. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        So, the result is: 2xlog(x)+2x- 2 x \log{\left(x \right)} + 2 x

      1. The integral of a constant is the constant times the variable of integration:

        (2log(3))dx=2xlog(3)\int \left(- 2 \log{\left(3 \right)}\right)\, dx = - 2 x \log{\left(3 \right)}

      The result is: x5log(x)5x525+x5log(3)52xlog(x)2xlog(3)+2x\frac{x^{5} \log{\left(x \right)}}{5} - \frac{x^{5}}{25} + \frac{x^{5} \log{\left(3 \right)}}{5} - 2 x \log{\left(x \right)} - 2 x \log{\left(3 \right)} + 2 x

  2. Now simplify:

    x(5x4log(x)x4+x4log(243)50log(x)log(717897987691852588770249)+50)25\frac{x \left(5 x^{4} \log{\left(x \right)} - x^{4} + x^{4} \log{\left(243 \right)} - 50 \log{\left(x \right)} - \log{\left(717897987691852588770249 \right)} + 50\right)}{25}

  3. Add the constant of integration:

    x(5x4log(x)x4+x4log(243)50log(x)log(717897987691852588770249)+50)25+constant\frac{x \left(5 x^{4} \log{\left(x \right)} - x^{4} + x^{4} \log{\left(243 \right)} - 50 \log{\left(x \right)} - \log{\left(717897987691852588770249 \right)} + 50\right)}{25}+ \mathrm{constant}


The answer is:

x(5x4log(x)x4+x4log(243)50log(x)log(717897987691852588770249)+50)25+constant\frac{x \left(5 x^{4} \log{\left(x \right)} - x^{4} + x^{4} \log{\left(243 \right)} - 50 \log{\left(x \right)} - \log{\left(717897987691852588770249 \right)} + 50\right)}{25}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                       
 |                                                                                        
 | / 5      \                          5                              5           5       
 | \x  - 2*x/*log(3*x)                x                              x *log(3)   x *log(x)
 | ------------------- dx = C + 2*x - -- - 2*x*log(3) - 2*x*log(x) + --------- + ---------
 |          x                         25                                 5           5    
 |                                                                                        
/                                                                                         
(x52x)log(3x)xdx=C+x5log(x)5x525+x5log(3)52xlog(x)2xlog(3)+2x\int \frac{\left(x^{5} - 2 x\right) \log{\left(3 x \right)}}{x}\, dx = C + \frac{x^{5} \log{\left(x \right)}}{5} - \frac{x^{5}}{25} + \frac{x^{5} \log{\left(3 \right)}}{5} - 2 x \log{\left(x \right)} - 2 x \log{\left(3 \right)} + 2 x
The graph
1.03.01.21.41.61.82.02.22.42.62.8-200200
The answer [src]
142   213*log(9)   9*log(3)
--- - ---------- - --------
 25       5           5    
213log(9)59log(3)5+14225- \frac{213 \log{\left(9 \right)}}{5} - \frac{9 \log{\left(3 \right)}}{5} + \frac{142}{25}
=
=
142   213*log(9)   9*log(3)
--- - ---------- - --------
 25       5           5    
213log(9)59log(3)5+14225- \frac{213 \log{\left(9 \right)}}{5} - \frac{9 \log{\left(3 \right)}}{5} + \frac{142}{25}
142/25 - 213*log(9)/5 - 9*log(3)/5
Numerical answer [src]
-89.8992691141255
-89.8992691141255

    Use the examples entering the upper and lower limits of integration.