1 / | | / 5 \ | \x - 2*x/*log(3*x) | ------------------- dx | x | / 3
Integral(((x^5 - 2*x)*log(3*x))/x, (x, 3, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Let .
Then let and substitute :
Integrate term-by-term:
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
The integral of the exponential function is itself.
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
The result is:
Now substitute back in:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant is the constant times the variable of integration:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant is the constant times the variable of integration:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | / 5 \ 5 5 5 | \x - 2*x/*log(3*x) x x *log(3) x *log(x) | ------------------- dx = C + 2*x - -- - 2*x*log(3) - 2*x*log(x) + --------- + --------- | x 25 5 5 | /
142 213*log(9) 9*log(3) --- - ---------- - -------- 25 5 5
=
142 213*log(9) 9*log(3) --- - ---------- - -------- 25 5 5
142/25 - 213*log(9)/5 - 9*log(3)/5
Use the examples entering the upper and lower limits of integration.