Mister Exam

Other calculators

Integral of J(4x³+3x²-2x-8)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                             
  /                             
 |                              
 |    /   3      2          \   
 |  I*\4*x  + 3*x  - 2*x - 8/ dx
 |                              
/                               
0                               
01i((2x+(4x3+3x2))8)dx\int\limits_{0}^{1} i \left(\left(- 2 x + \left(4 x^{3} + 3 x^{2}\right)\right) - 8\right)\, dx
Integral(i*(4*x^3 + 3*x^2 - 2*x - 8), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    i((2x+(4x3+3x2))8)dx=i((2x+(4x3+3x2))8)dx\int i \left(\left(- 2 x + \left(4 x^{3} + 3 x^{2}\right)\right) - 8\right)\, dx = i \int \left(\left(- 2 x + \left(4 x^{3} + 3 x^{2}\right)\right) - 8\right)\, dx

    1. Integrate term-by-term:

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          (2x)dx=2xdx\int \left(- 2 x\right)\, dx = - 2 \int x\, dx

          1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

            xdx=x22\int x\, dx = \frac{x^{2}}{2}

          So, the result is: x2- x^{2}

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            4x3dx=4x3dx\int 4 x^{3}\, dx = 4 \int x^{3}\, dx

            1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

              x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

            So, the result is: x4x^{4}

          1. The integral of a constant times a function is the constant times the integral of the function:

            3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

            1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

              x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

            So, the result is: x3x^{3}

          The result is: x4+x3x^{4} + x^{3}

        The result is: x4+x3x2x^{4} + x^{3} - x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        (8)dx=8x\int \left(-8\right)\, dx = - 8 x

      The result is: x4+x3x28xx^{4} + x^{3} - x^{2} - 8 x

    So, the result is: i(x4+x3x28x)i \left(x^{4} + x^{3} - x^{2} - 8 x\right)

  2. Now simplify:

    ix(x3+x2x8)i x \left(x^{3} + x^{2} - x - 8\right)

  3. Add the constant of integration:

    ix(x3+x2x8)+constanti x \left(x^{3} + x^{2} - x - 8\right)+ \mathrm{constant}


The answer is:

ix(x3+x2x8)+constanti x \left(x^{3} + x^{2} - x - 8\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                         
 |                                                          
 |   /   3      2          \            / 3    4    2      \
 | I*\4*x  + 3*x  - 2*x - 8/ dx = C + I*\x  + x  - x  - 8*x/
 |                                                          
/                                                           
i((2x+(4x3+3x2))8)dx=C+i(x4+x3x28x)\int i \left(\left(- 2 x + \left(4 x^{3} + 3 x^{2}\right)\right) - 8\right)\, dx = C + i \left(x^{4} + x^{3} - x^{2} - 8 x\right)
The graph
0.000000.000020.000040.000060.000080.000100.000120.000140.000160.000180.000200.0002201
The answer [src]
-7*I
7i- 7 i
=
=
-7*I
7i- 7 i
-7*i
Numerical answer [src]
(0.0 - 7.0j)
(0.0 - 7.0j)

    Use the examples entering the upper and lower limits of integration.