Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x^2sen(x) Integral of x^2sen(x)
  • Integral of t+1 Integral of t+1
  • Integral of (4-x^2)^2 Integral of (4-x^2)^2
  • Integral of 2*x/(x-1) Integral of 2*x/(x-1)
  • Identical expressions

  • four *cos(two *x)* five ^sin(two *x)
  • 4 multiply by co sinus of e of (2 multiply by x) multiply by 5 to the power of sinus of (2 multiply by x)
  • four multiply by co sinus of e of (two multiply by x) multiply by five to the power of sinus of (two multiply by x)
  • 4*cos(2*x)*5sin(2*x)
  • 4*cos2*x*5sin2*x
  • 4cos(2x)5^sin(2x)
  • 4cos(2x)5sin(2x)
  • 4cos2x5sin2x
  • 4cos2x5^sin2x
  • 4*cos(2*x)*5^sin(2*x)dx

Integral of 4*cos(2*x)*5^sin(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |              sin(2*x)   
 |  4*cos(2*x)*5         dx
 |                         
/                          
0                          
$$\int\limits_{0}^{1} 5^{\sin{\left(2 x \right)}} 4 \cos{\left(2 x \right)}\, dx$$
Integral((4*cos(2*x))*5^sin(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of an exponential function is itself divided by the natural logarithm of the base.

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of an exponential function is itself divided by the natural logarithm of the base.

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                  sin(2*x)
 |             sin(2*x)          2*5        
 | 4*cos(2*x)*5         dx = C + -----------
 |                                  log(5)  
/                                           
$$\int 5^{\sin{\left(2 x \right)}} 4 \cos{\left(2 x \right)}\, dx = \frac{2 \cdot 5^{\sin{\left(2 x \right)}}}{\log{\left(5 \right)}} + C$$
The graph
The answer [src]
              sin(2)
    2      2*5      
- ------ + ---------
  log(5)     log(5) 
$$- \frac{2}{\log{\left(5 \right)}} + \frac{2 \cdot 5^{\sin{\left(2 \right)}}}{\log{\left(5 \right)}}$$
=
=
              sin(2)
    2      2*5      
- ------ + ---------
  log(5)     log(5) 
$$- \frac{2}{\log{\left(5 \right)}} + \frac{2 \cdot 5^{\sin{\left(2 \right)}}}{\log{\left(5 \right)}}$$
-2/log(5) + 2*5^sin(2)/log(5)
Numerical answer [src]
4.12675035857694
4.12675035857694

    Use the examples entering the upper and lower limits of integration.