Mister Exam

Other calculators

Integral of (5*cos(x)+2-3*x^2+1/x-(4/x^2+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                        
  /                                        
 |                                         
 |  /                  2   1     4     \   
 |  |5*cos(x) + 2 - 3*x  + - + - -- - 1| dx
 |  |                      x      2    |   
 |  \                            x     /   
 |                                         
/                                          
0                                          
$$\int\limits_{0}^{1} \left(\left(-1 - \frac{4}{x^{2}}\right) + \left(\left(- 3 x^{2} + \left(5 \cos{\left(x \right)} + 2\right)\right) + \frac{1}{x}\right)\right)\, dx$$
Integral(5*cos(x) + 2 - 3*x^2 + 1/x - 4/x^2 - 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

          PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)

        So, the result is:

      The result is:

    1. Integrate term-by-term:

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        The result is:

      1. The integral of is .

      The result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                             
 |                                              
 | /                  2   1     4     \         
 | |5*cos(x) + 2 - 3*x  + - + - -- - 1| dx = nan
 | |                      x      2    |         
 | \                            x     /         
 |                                              
/                                               
$$\int \left(\left(-1 - \frac{4}{x^{2}}\right) + \left(\left(- 3 x^{2} + \left(5 \cos{\left(x \right)} + 2\right)\right) + \frac{1}{x}\right)\right)\, dx = \text{NaN}$$
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-5.51729471179439e+19
-5.51729471179439e+19

    Use the examples entering the upper and lower limits of integration.