1 / | | / 2 1 4 \ | |5*cos(x) + 2 - 3*x + - + - -- - 1| dx | | x 2 | | \ x / | / 0
Integral(5*cos(x) + 2 - 3*x^2 + 1/x - 4/x^2 - 1, (x, 0, 1))
Integrate term-by-term:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)
So, the result is:
The result is:
Integrate term-by-term:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
The result is:
The integral of is .
The result is:
The result is:
Add the constant of integration:
The answer is:
/ | | / 2 1 4 \ | |5*cos(x) + 2 - 3*x + - + - -- - 1| dx = nan | | x 2 | | \ x / | /
Use the examples entering the upper and lower limits of integration.