Mister Exam

Other calculators


exp(x)/(1-exp(2x))^1/2

Integral of exp(x)/(1-exp(2x))^1/2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |         x        
 |        e         
 |  ------------- dx
 |     __________   
 |    /      2*x    
 |  \/  1 - e       
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{e^{x}}{\sqrt{1 - e^{2 x}}}\, dx$$
Integral(exp(x)/(sqrt(1 - exp(2*x))), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

      ArcsinRule(context=1/sqrt(1 - _u**2), symbol=_u)

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |        x                       
 |       e                    / x\
 | ------------- dx = C + asin\e /
 |    __________                  
 |   /      2*x                   
 | \/  1 - e                      
 |                                
/                                 
$$\arcsin e^{x}$$
The graph
The answer [src]
  pi          
- -- + asin(e)
  2           
$$\arcsin e-{{\pi}\over{2}}$$
=
=
  pi          
- -- + asin(e)
  2           
$$- \frac{\pi}{2} + \operatorname{asin}{\left(e \right)}$$
Numerical answer [src]
(0.0 - 1.65745445377797j)
(0.0 - 1.65745445377797j)
The graph
Integral of exp(x)/(1-exp(2x))^1/2 dx

    Use the examples entering the upper and lower limits of integration.