oo / | | -2*x | ---- | a | E dx | / 0
Integral(E^((-2*x)/a), (x, 0, oo))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | -2*x | -2*x ---- | ---- a | a a*e | E dx = C - ------- | 2 /
/ a pi | - for |arg(a)| < -- | 2 2 | | oo | / | | < | -2*x | | ---- | | a | | e dx otherwise | | |/ |0 \
=
/ a pi | - for |arg(a)| < -- | 2 2 | | oo | / | | < | -2*x | | ---- | | a | | e dx otherwise | | |/ |0 \
Piecewise((a/2, Abs(arg(a)) < pi/2), (Integral(exp(-2*x/a), (x, 0, oo)), True))
Use the examples entering the upper and lower limits of integration.