Mister Exam

Other calculators

Integral of exp^(a*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi        
  /        
 |         
 |   a*x   
 |  E    dx
 |         
/          
0          
$$\int\limits_{0}^{\pi} e^{a x}\, dx$$
Integral(E^(a*x), (x, 0, pi))
The answer (Indefinite) [src]
  /              // a*x            \
 |               ||e               |
 |  a*x          ||----  for a != 0|
 | E    dx = C + |< a              |
 |               ||                |
/                || x    otherwise |
                 \\                /
$$\int e^{a x}\, dx = C + \begin{cases} \frac{e^{a x}}{a} & \text{for}\: a \neq 0 \\x & \text{otherwise} \end{cases}$$
The answer [src]
/       pi*a                                  
|  1   e                                      
|- - + -----  for And(a > -oo, a < oo, a != 0)
<  a     a                                    
|                                             
|    pi                  otherwise            
\                                             
$$\begin{cases} \frac{e^{\pi a}}{a} - \frac{1}{a} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\\pi & \text{otherwise} \end{cases}$$
=
=
/       pi*a                                  
|  1   e                                      
|- - + -----  for And(a > -oo, a < oo, a != 0)
<  a     a                                    
|                                             
|    pi                  otherwise            
\                                             
$$\begin{cases} \frac{e^{\pi a}}{a} - \frac{1}{a} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\\pi & \text{otherwise} \end{cases}$$
Piecewise((-1/a + exp(pi*a)/a, (a > -oo)∧(a < oo)∧(Ne(a, 0))), (pi, True))

    Use the examples entering the upper and lower limits of integration.