Mister Exam

Other calculators

Integral of exp^(2x)+exp^(-3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  / 2*x    -3*x\   
 |  \E    + E    / dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \left(e^{2 x} + e^{- 3 x}\right)\, dx$$
Integral(E^(2*x) + E^(-3*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                          2*x    -3*x
 | / 2*x    -3*x\          e      e    
 | \E    + E    / dx = C + ---- - -----
 |                          2       3  
/                                      
$$\int \left(e^{2 x} + e^{- 3 x}\right)\, dx = C + \frac{e^{2 x}}{2} - \frac{e^{- 3 x}}{3}$$
The graph
The answer [src]
       2    -3
  1   e    e  
- - + -- - ---
  6   2     3 
$$- \frac{1}{6} - \frac{1}{3 e^{3}} + \frac{e^{2}}{2}$$
=
=
       2    -3
  1   e    e  
- - + -- - ---
  6   2     3 
$$- \frac{1}{6} - \frac{1}{3 e^{3}} + \frac{e^{2}}{2}$$
-1/6 + exp(2)/2 - exp(-3)/3
Numerical answer [src]
3.5112656933427
3.5112656933427

    Use the examples entering the upper and lower limits of integration.