Mister Exam

Other calculators

Integral of exp(sin^2x)*sin2xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |      2               
 |   sin (x)            
 |  e       *sin(2*x) dx
 |                      
/                       
0                       
01esin2(x)sin(2x)dx\int\limits_{0}^{1} e^{\sin^{2}{\left(x \right)}} \sin{\left(2 x \right)}\, dx
Integral(exp(sin(x)^2)*sin(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. The integral of a constant times a function is the constant times the integral of the function:

      2esin2(x)sin(x)cos(x)dx=2esin2(x)sin(x)cos(x)dx\int 2 e^{\sin^{2}{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int e^{\sin^{2}{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin2(x)u = \sin^{2}{\left(x \right)}.

        Then let du=2sin(x)cos(x)dxdu = 2 \sin{\left(x \right)} \cos{\left(x \right)} dx and substitute du2\frac{du}{2}:

        eu2du\int \frac{e^{u}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        esin2(x)2\frac{e^{\sin^{2}{\left(x \right)}}}{2}

      So, the result is: esin2(x)e^{\sin^{2}{\left(x \right)}}

    Method #2

    1. Rewrite the integrand:

      esin2(x)sin(2x)=2esin2(x)sin(x)cos(x)e^{\sin^{2}{\left(x \right)}} \sin{\left(2 x \right)} = 2 e^{\sin^{2}{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)}

    2. The integral of a constant times a function is the constant times the integral of the function:

      2esin2(x)sin(x)cos(x)dx=2esin2(x)sin(x)cos(x)dx\int 2 e^{\sin^{2}{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)}\, dx = 2 \int e^{\sin^{2}{\left(x \right)}} \sin{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin2(x)u = \sin^{2}{\left(x \right)}.

        Then let du=2sin(x)cos(x)dxdu = 2 \sin{\left(x \right)} \cos{\left(x \right)} dx and substitute du2\frac{du}{2}:

        eu2du\int \frac{e^{u}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        esin2(x)2\frac{e^{\sin^{2}{\left(x \right)}}}{2}

      So, the result is: esin2(x)e^{\sin^{2}{\left(x \right)}}

  2. Add the constant of integration:

    esin2(x)+constante^{\sin^{2}{\left(x \right)}}+ \mathrm{constant}


The answer is:

esin2(x)+constante^{\sin^{2}{\left(x \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                    
 |     2                          2   
 |  sin (x)                    sin (x)
 | e       *sin(2*x) dx = C + e       
 |                                    
/                                     
esin2(x)sin(2x)dx=C+esin2(x)\int e^{\sin^{2}{\left(x \right)}} \sin{\left(2 x \right)}\, dx = C + e^{\sin^{2}{\left(x \right)}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
         2   
      sin (1)
-1 + e       
1+esin2(1)-1 + e^{\sin^{2}{\left(1 \right)}}
=
=
         2   
      sin (1)
-1 + e       
1+esin2(1)-1 + e^{\sin^{2}{\left(1 \right)}}
-1 + exp(sin(1)^2)
Numerical answer [src]
1.03007638063326
1.03007638063326

    Use the examples entering the upper and lower limits of integration.