Integral of exp(sin^2x)*sin2xdx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
The integral of a constant times a function is the constant times the integral of the function:
∫2esin2(x)sin(x)cos(x)dx=2∫esin2(x)sin(x)cos(x)dx
-
Let u=sin2(x).
Then let du=2sin(x)cos(x)dx and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2esin2(x)
So, the result is: esin2(x)
Method #2
-
Rewrite the integrand:
esin2(x)sin(2x)=2esin2(x)sin(x)cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2esin2(x)sin(x)cos(x)dx=2∫esin2(x)sin(x)cos(x)dx
-
Let u=sin2(x).
Then let du=2sin(x)cos(x)dx and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2esin2(x)
So, the result is: esin2(x)
-
Add the constant of integration:
esin2(x)+constant
The answer is:
esin2(x)+constant
The answer (Indefinite)
[src]
/
|
| 2 2
| sin (x) sin (x)
| e *sin(2*x) dx = C + e
|
/
∫esin2(x)sin(2x)dx=C+esin2(x)
The graph
−1+esin2(1)
=
−1+esin2(1)
Use the examples entering the upper and lower limits of integration.