Mister Exam

Other calculators

Integral of exp((4*x)/3)-(2/exp(-x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  / 4*x      \   
 |  | ---      |   
 |  |  3     2 |   
 |  |e    - ---| dx
 |  |        -x|   
 |  \       e  /   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \left(e^{\frac{4 x}{3}} - \frac{2}{e^{- x}}\right)\, dx$$
Integral(exp((4*x)/3) - 2*exp(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                 4*x
 | / 4*x      \                    ---
 | | ---      |                     3 
 | |  3     2 |             x   3*e   
 | |e    - ---| dx = C - 2*e  + ------
 | |        -x|                   4   
 | \       e  /                       
 |                                    
/                                     
$$\int \left(e^{\frac{4 x}{3}} - \frac{2}{e^{- x}}\right)\, dx = C - 2 e^{x} + \frac{3 e^{\frac{4 x}{3}}}{4}$$
The graph
The answer [src]
             4/3
5         3*e   
- - 2*E + ------
4           4   
$$- 2 e + \frac{5}{4} + \frac{3 e^{\frac{4}{3}}}{4}$$
=
=
             4/3
5         3*e   
- - 2*E + ------
4           4   
$$- 2 e + \frac{5}{4} + \frac{3 e^{\frac{4}{3}}}{4}$$
5/4 - 2*E + 3*exp(4/3)/4
Numerical answer [src]
-1.34131273590571
-1.34131273590571

    Use the examples entering the upper and lower limits of integration.