1 / | | 3*x | e *cos(2*x) dx | / 0
Integral(exp(3*x)*cos(2*x), (x, 0, 1))
Use integration by parts, noting that the integrand eventually repeats itself.
For the integrand :
Let and let .
Then .
For the integrand :
Let and let .
Then .
Notice that the integrand has repeated itself, so move it to one side:
Therefore,
Now simplify:
Add the constant of integration:
The answer is:
/ | 3*x 3*x | 3*x 2*e *sin(2*x) 3*cos(2*x)*e | e *cos(2*x) dx = C + --------------- + --------------- | 13 13 /
3 3 3 2*e *sin(2) 3*cos(2)*e - -- + ----------- + ----------- 13 13 13
=
3 3 3 2*e *sin(2) 3*cos(2)*e - -- + ----------- + ----------- 13 13 13
-3/13 + 2*exp(3)*sin(2)/13 + 3*cos(2)*exp(3)/13
Use the examples entering the upper and lower limits of integration.