Integral of (exp(3x))*cos(2x) dx
The solution
Detail solution
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand e3xcos(2x):
Let u(x)=cos(2x) and let dv(x)=e3x.
Then ∫e3xcos(2x)dx=3e3xcos(2x)−∫(−32e3xsin(2x))dx.
-
For the integrand −32e3xsin(2x):
Let u(x)=−32sin(2x) and let dv(x)=e3x.
Then ∫e3xcos(2x)dx=92e3xsin(2x)+3e3xcos(2x)+∫(−94e3xcos(2x))dx.
-
Notice that the integrand has repeated itself, so move it to one side:
913∫e3xcos(2x)dx=92e3xsin(2x)+3e3xcos(2x)
Therefore,
∫e3xcos(2x)dx=132e3xsin(2x)+133e3xcos(2x)
-
Now simplify:
13(2sin(2x)+3cos(2x))e3x
-
Add the constant of integration:
13(2sin(2x)+3cos(2x))e3x+constant
The answer is:
13(2sin(2x)+3cos(2x))e3x+constant
The answer (Indefinite)
[src]
/
| 3*x 3*x
| 3*x 2*e *sin(2*x) 3*cos(2*x)*e
| e *cos(2*x) dx = C + --------------- + ---------------
| 13 13
/
∫e3xcos(2x)dx=C+132e3xsin(2x)+133e3xcos(2x)
The graph
3 3
3 2*e *sin(2) 3*cos(2)*e
- -- + ----------- + -----------
13 13 13
133e3cos(2)−133+132e3sin(2)
=
3 3
3 2*e *sin(2) 3*cos(2)*e
- -- + ----------- + -----------
13 13 13
133e3cos(2)−133+132e3sin(2)
-3/13 + 2*exp(3)*sin(2)/13 + 3*cos(2)*exp(3)/13
Use the examples entering the upper and lower limits of integration.