Mister Exam

Other calculators

Integral of (exp(3x))*cos(2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |   3*x            
 |  e   *cos(2*x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} e^{3 x} \cos{\left(2 x \right)}\, dx$$
Integral(exp(3*x)*cos(2*x), (x, 0, 1))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand :

      Let and let .

      Then .

    2. For the integrand :

      Let and let .

      Then .

    3. Notice that the integrand has repeated itself, so move it to one side:

      Therefore,

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                           3*x                        3*x
 |  3*x                   2*e   *sin(2*x)   3*cos(2*x)*e   
 | e   *cos(2*x) dx = C + --------------- + ---------------
 |                               13                13      
/                                                          
$$\int e^{3 x} \cos{\left(2 x \right)}\, dx = C + \frac{2 e^{3 x} \sin{\left(2 x \right)}}{13} + \frac{3 e^{3 x} \cos{\left(2 x \right)}}{13}$$
The graph
The answer [src]
          3                    3
  3    2*e *sin(2)   3*cos(2)*e 
- -- + ----------- + -----------
  13        13            13    
$$\frac{3 e^{3} \cos{\left(2 \right)}}{13} - \frac{3}{13} + \frac{2 e^{3} \sin{\left(2 \right)}}{13}$$
=
=
          3                    3
  3    2*e *sin(2)   3*cos(2)*e 
- -- + ----------- + -----------
  13        13            13    
$$\frac{3 e^{3} \cos{\left(2 \right)}}{13} - \frac{3}{13} + \frac{2 e^{3} \sin{\left(2 \right)}}{13}$$
-3/13 + 2*exp(3)*sin(2)/13 + 3*cos(2)*exp(3)/13
Numerical answer [src]
0.650142779117494
0.650142779117494

    Use the examples entering the upper and lower limits of integration.