1 / | | 2*x | e | ------------- dx | __________ | 3 / 2*x | \/ e + 3 | / 0
Integral(exp(2*x)/(exp(2*x) + 3)^(1/3), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | 2/3 | 2*x / 2*x\ | e 3*\3 + e / | ------------- dx = C + --------------- | __________ 4 | 3 / 2*x | \/ e + 3 | /
2/3
3 ___ / 2\
3*\/ 2 3*\3 + e /
- ------- + -------------
2 4
=
2/3
3 ___ / 2\
3*\/ 2 3*\3 + e /
- ------- + -------------
2 4
-3*2^(1/3)/2 + 3*(3 + exp(2))^(2/3)/4
Use the examples entering the upper and lower limits of integration.