Mister Exam

Other calculators

Integral of (exp(2x))/((exp(2x)+3)^(1/3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        2*x       
 |       e          
 |  ------------- dx
 |     __________   
 |  3 /  2*x        
 |  \/  e    + 3    
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{e^{2 x}}{\sqrt[3]{e^{2 x} + 3}}\, dx$$
Integral(exp(2*x)/(exp(2*x) + 3)^(1/3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #3

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                    2/3
 |       2*x                /     2*x\   
 |      e                 3*\3 + e   /   
 | ------------- dx = C + ---------------
 |    __________                 4       
 | 3 /  2*x                              
 | \/  e    + 3                          
 |                                       
/                                        
$$\int \frac{e^{2 x}}{\sqrt[3]{e^{2 x} + 3}}\, dx = C + \frac{3 \left(e^{2 x} + 3\right)^{\frac{2}{3}}}{4}$$
The graph
The answer [src]
                      2/3
    3 ___     /     2\   
  3*\/ 2    3*\3 + e /   
- ------- + -------------
     2            4      
$$- \frac{3 \sqrt[3]{2}}{2} + \frac{3 \left(3 + e^{2}\right)^{\frac{2}{3}}}{4}$$
=
=
                      2/3
    3 ___     /     2\   
  3*\/ 2    3*\3 + e /   
- ------- + -------------
     2            4      
$$- \frac{3 \sqrt[3]{2}}{2} + \frac{3 \left(3 + e^{2}\right)^{\frac{2}{3}}}{4}$$
-3*2^(1/3)/2 + 3*(3 + exp(2))^(2/3)/4
Numerical answer [src]
1.68102639528624
1.68102639528624

    Use the examples entering the upper and lower limits of integration.