Mister Exam

Other calculators

Integral of 8+2x-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                  
  /                  
 |                   
 |  /           2\   
 |  \8 + 2*x - x / dx
 |                   
/                    
-20                  
204(x2+(2x+8))dx\int\limits_{-20}^{4} \left(- x^{2} + \left(2 x + 8\right)\right)\, dx
Integral(8 + 2*x - x^2, (x, -20, 4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x2)dx=x2dx\int \left(- x^{2}\right)\, dx = - \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x33- \frac{x^{3}}{3}

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x2x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        8dx=8x\int 8\, dx = 8 x

      The result is: x2+8xx^{2} + 8 x

    The result is: x33+x2+8x- \frac{x^{3}}{3} + x^{2} + 8 x

  2. Now simplify:

    x(x2+3x+24)3\frac{x \left(- x^{2} + 3 x + 24\right)}{3}

  3. Add the constant of integration:

    x(x2+3x+24)3+constant\frac{x \left(- x^{2} + 3 x + 24\right)}{3}+ \mathrm{constant}


The answer is:

x(x2+3x+24)3+constant\frac{x \left(- x^{2} + 3 x + 24\right)}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                                     3
 | /           2\           2         x 
 | \8 + 2*x - x / dx = C + x  + 8*x - --
 |                                    3 
/                                       
(x2+(2x+8))dx=Cx33+x2+8x\int \left(- x^{2} + \left(2 x + 8\right)\right)\, dx = C - \frac{x^{3}}{3} + x^{2} + 8 x
The graph
-20.0-17.5-15.0-12.5-10.0-7.5-5.0-2.50.02.5-50005000
The answer [src]
-2880
2880-2880
=
=
-2880
2880-2880
-2880
Numerical answer [src]
-2880.0
-2880.0

    Use the examples entering the upper and lower limits of integration.