Integral of 8/(x^2+4) dx
The solution
Detail solution
We have the integral:
/
|
| 8
| ------ dx
| 2
| x + 4
|
/
Rewrite the integrand
/8\
|-|
8 \4/
------ = ----------
2 2
x + 4 /-x \
|---| + 1
\ 2 /
or
/
|
| 8
| ------ dx
| 2 =
| x + 4
|
/
/
|
| 1
2* | ---------- dx
| 2
| /-x \
| |---| + 1
| \ 2 /
|
/
In the integral
/
|
| 1
2* | ---------- dx
| 2
| /-x \
| |---| + 1
| \ 2 /
|
/
do replacement
then
the integral =
/
|
| 1
2* | ------ dv = 2*atan(v)
| 2
| 1 + v
|
/
do backward replacement
/
|
| 1 /x\
2* | ---------- dx = 4*atan|-|
| 2 \2/
| /-x \
| |---| + 1
| \ 2 /
|
/
Solution is:
The answer (Indefinite)
[src]
/
|
| 8 /x\
| ------ dx = C + 4*atan|-|
| 2 \2/
| x + 4
|
/
∫x2+48dx=C+4atan(2x)
The graph
4atan(21)
=
4atan(21)
Use the examples entering the upper and lower limits of integration.