1 / | | x | E *log(x) dx | / 0
Integral(E^x*log(x), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
Let .
Then let and substitute :
The integral of the exponential function is itself.
Now substitute back in:
Now evaluate the sub-integral.
Let .
Then let and substitute :
EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)
Now substitute back in:
Now substitute back in:
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
EiRule(a=1, b=0, context=exp(x)/x, symbol=x)
Add the constant of integration:
The answer is:
/ | | x x | E *log(x) dx = C - Ei(x) + e *log(x) | /
-Ei(1) + EulerGamma
=
-Ei(1) + EulerGamma
-Ei(1) + EulerGamma
Use the examples entering the upper and lower limits of integration.