Mister Exam

Integral of e^xlnx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   x          
 |  E *log(x) dx
 |              
/               
0               
$$\int\limits_{0}^{1} e^{x} \log{\left(x \right)}\, dx$$
Integral(E^x*log(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of the exponential function is itself.

          Now substitute back in:

        Now evaluate the sub-integral.

      2. Let .

        Then let and substitute :

          EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of the exponential function is itself.

      Now evaluate the sub-integral.

      EiRule(a=1, b=0, context=exp(x)/x, symbol=x)

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                                     
 |  x                          x       
 | E *log(x) dx = C - Ei(x) + e *log(x)
 |                                     
/                                      
$$\int e^{x} \log{\left(x \right)}\, dx = C + e^{x} \log{\left(x \right)} - \operatorname{Ei}{\left(x \right)}$$
The graph
The answer [src]
-Ei(1) + EulerGamma
$$\gamma - \operatorname{Ei}{\left(1 \right)}$$
=
=
-Ei(1) + EulerGamma
$$\gamma - \operatorname{Ei}{\left(1 \right)}$$
-Ei(1) + EulerGamma
Numerical answer [src]
-1.3179021514544
-1.3179021514544
The graph
Integral of e^xlnx dx

    Use the examples entering the upper and lower limits of integration.