Mister Exam

Integral of e^xsin(y)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   x          
 |  E *sin(y) dx
 |              
/               
0               
$$\int\limits_{0}^{1} e^{x} \sin{\left(y \right)}\, dx$$
Integral(E^x*sin(y), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of the exponential function is itself.

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            
 |                             
 |  x                  x       
 | E *sin(y) dx = C + e *sin(y)
 |                             
/                              
$$\int e^{x} \sin{\left(y \right)}\, dx = C + e^{x} \sin{\left(y \right)}$$
The answer [src]
-sin(y) + E*sin(y)
$$- \sin{\left(y \right)} + e \sin{\left(y \right)}$$
=
=
-sin(y) + E*sin(y)
$$- \sin{\left(y \right)} + e \sin{\left(y \right)}$$
-sin(y) + E*sin(y)

    Use the examples entering the upper and lower limits of integration.