Mister Exam

Other calculators

Integral of ((e^x)+(1/((cos^2)x))+(1/(sqrt(10+(x^2))))+9^x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                        
  /                                        
 |                                         
 |  / x       1            1          x\   
 |  |E  + --------- + ------------ + 9 | dx
 |  |        2           _________     |   
 |  |     cos (x)*x     /       2      |   
 |  \                 \/  10 + x       /   
 |                                         
/                                          
0                                          
$$\int\limits_{0}^{1} \left(9^{x} + \left(\left(e^{x} + \frac{1}{x \cos^{2}{\left(x \right)}}\right) + \frac{1}{\sqrt{x^{2} + 10}}\right)\right)\, dx$$
Integral(E^x + 1/(cos(x)^2*x) + 1/(sqrt(10 + x^2)) + 9^x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of an exponential function is itself divided by the natural logarithm of the base.

    1. Integrate term-by-term:

      1. Integrate term-by-term:

        1. The integral of the exponential function is itself.

        1. Don't know the steps in finding this integral.

          But the integral is

        The result is:

        TrigSubstitutionRule(theta=_theta, func=sqrt(10)*tan(_theta), rewritten=sec(_theta), substep=RewriteRule(rewritten=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=tan(_theta) + sec(_theta), constant=1, substep=ReciprocalRule(func=_u, context=1/_u, symbol=_u), context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta)], context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta), context=sec(_theta), symbol=_theta), restriction=True, context=1/(sqrt(x**2 + 10)), symbol=x)

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              /                  /     ________           \
 |                                                       x      |                   |    /      2        ____|
 | / x       1            1          x\           x     9       |     1             |   /      x     x*\/ 10 |
 | |E  + --------- + ------------ + 9 | dx = C + E  + ------ +  | --------- dx + log|  /   1 + --  + --------|
 | |        2           _________     |               log(9)    |      2            \\/        10       10   /
 | |     cos (x)*x     /       2      |                         | x*cos (x)                                   
 | \                 \/  10 + x       /                         |                                             
 |                                                             /                                              
/                                                                                                             
$$\int \left(9^{x} + \left(\left(e^{x} + \frac{1}{x \cos^{2}{\left(x \right)}}\right) + \frac{1}{\sqrt{x^{2} + 10}}\right)\right)\, dx = \frac{9^{x}}{\log{\left(9 \right)}} + e^{x} + C + \log{\left(\frac{\sqrt{10} x}{10} + \sqrt{\frac{x^{2}}{10} + 1} \right)} + \int \frac{1}{x \cos^{2}{\left(x \right)}}\, dx$$
The answer [src]
  1                                                                                    
  /                                                                                    
 |                                                                                     
 |     _________                       _________                _________              
 |    /       2         2         x   /       2     2          /       2     2     x   
 |  \/  10 + x   + x*cos (x) + x*9 *\/  10 + x  *cos (x) + x*\/  10 + x  *cos (x)*e    
 |  -------------------------------------------------------------------------------- dx
 |                                    _________                                        
 |                                   /       2     2                                   
 |                               x*\/  10 + x  *cos (x)                                
 |                                                                                     
/                                                                                      
0                                                                                      
$$\int\limits_{0}^{1} \frac{9^{x} x \sqrt{x^{2} + 10} \cos^{2}{\left(x \right)} + x \sqrt{x^{2} + 10} e^{x} \cos^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + \sqrt{x^{2} + 10}}{x \sqrt{x^{2} + 10} \cos^{2}{\left(x \right)}}\, dx$$
=
=
  1                                                                                    
  /                                                                                    
 |                                                                                     
 |     _________                       _________                _________              
 |    /       2         2         x   /       2     2          /       2     2     x   
 |  \/  10 + x   + x*cos (x) + x*9 *\/  10 + x  *cos (x) + x*\/  10 + x  *cos (x)*e    
 |  -------------------------------------------------------------------------------- dx
 |                                    _________                                        
 |                                   /       2     2                                   
 |                               x*\/  10 + x  *cos (x)                                
 |                                                                                     
/                                                                                      
0                                                                                      
$$\int\limits_{0}^{1} \frac{9^{x} x \sqrt{x^{2} + 10} \cos^{2}{\left(x \right)} + x \sqrt{x^{2} + 10} e^{x} \cos^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + \sqrt{x^{2} + 10}}{x \sqrt{x^{2} + 10} \cos^{2}{\left(x \right)}}\, dx$$
Integral((sqrt(10 + x^2) + x*cos(x)^2 + x*9^x*sqrt(10 + x^2)*cos(x)^2 + x*sqrt(10 + x^2)*cos(x)^2*exp(x))/(x*sqrt(10 + x^2)*cos(x)^2), (x, 0, 1))
Numerical answer [src]
50.531349750937
50.531349750937

    Use the examples entering the upper and lower limits of integration.