1 / | | / x 1 1 x\ | |E + --------- + ------------ + 9 | dx | | 2 _________ | | | cos (x)*x / 2 | | \ \/ 10 + x / | / 0
Integral(E^x + 1/(cos(x)^2*x) + 1/(sqrt(10 + x^2)) + 9^x, (x, 0, 1))
Integrate term-by-term:
The integral of an exponential function is itself divided by the natural logarithm of the base.
Integrate term-by-term:
Integrate term-by-term:
The integral of the exponential function is itself.
Don't know the steps in finding this integral.
But the integral is
The result is:
TrigSubstitutionRule(theta=_theta, func=sqrt(10)*tan(_theta), rewritten=sec(_theta), substep=RewriteRule(rewritten=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=tan(_theta) + sec(_theta), constant=1, substep=ReciprocalRule(func=_u, context=1/_u, symbol=_u), context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta)], context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta), context=sec(_theta), symbol=_theta), restriction=True, context=1/(sqrt(x**2 + 10)), symbol=x)
The result is:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ / / ________ \ | x | | / 2 ____| | / x 1 1 x\ x 9 | 1 | / x x*\/ 10 | | |E + --------- + ------------ + 9 | dx = C + E + ------ + | --------- dx + log| / 1 + -- + --------| | | 2 _________ | log(9) | 2 \\/ 10 10 / | | cos (x)*x / 2 | | x*cos (x) | \ \/ 10 + x / | | / /
1 / | | _________ _________ _________ | / 2 2 x / 2 2 / 2 2 x | \/ 10 + x + x*cos (x) + x*9 *\/ 10 + x *cos (x) + x*\/ 10 + x *cos (x)*e | -------------------------------------------------------------------------------- dx | _________ | / 2 2 | x*\/ 10 + x *cos (x) | / 0
=
1 / | | _________ _________ _________ | / 2 2 x / 2 2 / 2 2 x | \/ 10 + x + x*cos (x) + x*9 *\/ 10 + x *cos (x) + x*\/ 10 + x *cos (x)*e | -------------------------------------------------------------------------------- dx | _________ | / 2 2 | x*\/ 10 + x *cos (x) | / 0
Integral((sqrt(10 + x^2) + x*cos(x)^2 + x*9^x*sqrt(10 + x^2)*cos(x)^2 + x*sqrt(10 + x^2)*cos(x)^2*exp(x))/(x*sqrt(10 + x^2)*cos(x)^2), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.