Mister Exam

Other calculators

Integral of e^x*(1/x+ln(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |   x /1         \   
 |  E *|- + log(x)| dx
 |     \x         /   
 |                    
/                     
0                     
01ex(log(x)+1x)dx\int\limits_{0}^{1} e^{x} \left(\log{\left(x \right)} + \frac{1}{x}\right)\, dx
Integral(E^x*(1/x + log(x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (ue1u+e1ulog(1u)u2)du\int \left(- \frac{u e^{\frac{1}{u}} + e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}}{u^{2}}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        ue1u+e1ulog(1u)u2du=ue1u+e1ulog(1u)u2du\int \frac{u e^{\frac{1}{u}} + e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}}{u^{2}}\, du = - \int \frac{u e^{\frac{1}{u}} + e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}}{u^{2}}\, du

        1. Let u=1uu = \frac{1}{u}.

          Then let du=duu2du = - \frac{du}{u^{2}} and substitute du- du:

          (ueulog(u)+euu)du\int \left(- \frac{u e^{u} \log{\left(u \right)} + e^{u}}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            ueulog(u)+euudu=ueulog(u)+euudu\int \frac{u e^{u} \log{\left(u \right)} + e^{u}}{u}\, du = - \int \frac{u e^{u} \log{\left(u \right)} + e^{u}}{u}\, du

            1. Let u=log(u)u = \log{\left(u \right)}.

              Then let du=duudu = \frac{du}{u} and substitute dudu:

              (ueueeu+eeu)du\int \left(u e^{u} e^{e^{u}} + e^{e^{u}}\right)\, du

              1. Integrate term-by-term:

                1. Use integration by parts:

                  udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

                  Let u(u)=uu{\left(u \right)} = u and let dv(u)=eueeu\operatorname{dv}{\left(u \right)} = e^{u} e^{e^{u}}.

                  Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

                  To find v(u)v{\left(u \right)}:

                  1. Let u=euu = e^{u}.

                    Then let du=eududu = e^{u} du and substitute dudu:

                    eudu\int e^{u}\, du

                    1. The integral of the exponential function is itself.

                      eudu=eu\int e^{u}\, du = e^{u}

                    Now substitute uu back in:

                    eeue^{e^{u}}

                  Now evaluate the sub-integral.

                2. Let u=euu = e^{u}.

                  Then let du=eududu = e^{u} du and substitute dudu:

                  euudu\int \frac{e^{u}}{u}\, du

                    EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)

                  Now substitute uu back in:

                  Ei(eu)\operatorname{Ei}{\left(e^{u} \right)}

                1. Let u=euu = e^{u}.

                  Then let du=eududu = e^{u} du and substitute dudu:

                  euudu\int \frac{e^{u}}{u}\, du

                    EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)

                  Now substitute uu back in:

                  Ei(eu)\operatorname{Ei}{\left(e^{u} \right)}

                The result is: ueeuu e^{e^{u}}

              Now substitute uu back in:

              eulog(u)e^{u} \log{\left(u \right)}

            So, the result is: eulog(u)- e^{u} \log{\left(u \right)}

          Now substitute uu back in:

          e1ulog(u)e^{\frac{1}{u}} \log{\left(u \right)}

        So, the result is: e1ulog(u)- e^{\frac{1}{u}} \log{\left(u \right)}

      Now substitute uu back in:

      exlog(x)e^{x} \log{\left(x \right)}

    Method #2

    1. Rewrite the integrand:

      ex(log(x)+1x)=xexlog(x)+exxe^{x} \left(\log{\left(x \right)} + \frac{1}{x}\right) = \frac{x e^{x} \log{\left(x \right)} + e^{x}}{x}

    2. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (ue1u+e1ulog(1u)u2)du\int \left(- \frac{u e^{\frac{1}{u}} + e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}}{u^{2}}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        ue1u+e1ulog(1u)u2du=ue1u+e1ulog(1u)u2du\int \frac{u e^{\frac{1}{u}} + e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}}{u^{2}}\, du = - \int \frac{u e^{\frac{1}{u}} + e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}}{u^{2}}\, du

        1. Let u=e1ulog(1u)u = e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}.

          Then let du=(e1uue1ulog(1u)u2)dudu = \left(- \frac{e^{\frac{1}{u}}}{u} - \frac{e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}}{u^{2}}\right) du and substitute du- du:

          (1)du\int \left(-1\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            False\text{False}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u- u

          Now substitute uu back in:

          e1ulog(1u)- e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}

        So, the result is: e1ulog(1u)e^{\frac{1}{u}} \log{\left(\frac{1}{u} \right)}

      Now substitute uu back in:

      exlog(x)e^{x} \log{\left(x \right)}

    Method #3

    1. Rewrite the integrand:

      ex(log(x)+1x)=exlog(x)+exxe^{x} \left(\log{\left(x \right)} + \frac{1}{x}\right) = e^{x} \log{\left(x \right)} + \frac{e^{x}}{x}

    2. Integrate term-by-term:

      1. Let u=log(x)u = \log{\left(x \right)}.

        Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

        ueueeudu\int u e^{u} e^{e^{u}}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=eueeu\operatorname{dv}{\left(u \right)} = e^{u} e^{e^{u}}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=euu = e^{u}.

            Then let du=eududu = e^{u} du and substitute dudu:

            eudu\int e^{u}\, du

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            Now substitute uu back in:

            eeue^{e^{u}}

          Now evaluate the sub-integral.

        2. Let u=euu = e^{u}.

          Then let du=eududu = e^{u} du and substitute dudu:

          euudu\int \frac{e^{u}}{u}\, du

            EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)

          Now substitute uu back in:

          Ei(eu)\operatorname{Ei}{\left(e^{u} \right)}

        Now substitute uu back in:

        exlog(x)Ei(x)e^{x} \log{\left(x \right)} - \operatorname{Ei}{\left(x \right)}

        EiRule(a=1, b=0, context=exp(x)/x, symbol=x)

      The result is: exlog(x)e^{x} \log{\left(x \right)}

  2. Add the constant of integration:

    exlog(x)+constante^{x} \log{\left(x \right)}+ \mathrm{constant}


The answer is:

exlog(x)+constante^{x} \log{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                   
 |  x /1         \           x       
 | E *|- + log(x)| dx = C + e *log(x)
 |    \x         /                   
 |                                   
/                                    
ex(log(x)+1x)dx=C+exlog(x)\int e^{x} \left(\log{\left(x \right)} + \frac{1}{x}\right)\, dx = C + e^{x} \log{\left(x \right)}
The answer [src]
oo
\infty
=
=
oo
\infty
oo
Numerical answer [src]
44.0904461339929
44.0904461339929

    Use the examples entering the upper and lower limits of integration.