Integral of e^x*(1/x+ln(x)) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=x1.
Then let du=−x2dx and substitute −du:
∫(−u2ueu1+eu1log(u1))du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2ueu1+eu1log(u1)du=−∫u2ueu1+eu1log(u1)du
-
Let u=u1.
Then let du=−u2du and substitute −du:
∫(−uueulog(u)+eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫uueulog(u)+eudu=−∫uueulog(u)+eudu
-
Let u=log(u).
Then let du=udu and substitute du:
∫(ueueeu+eeu)du
-
Integrate term-by-term:
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=eueeu.
Then du(u)=1.
To find v(u):
-
Let u=eu.
Then let du=eudu and substitute du:
∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
Now substitute u back in:
Now evaluate the sub-integral.
-
Let u=eu.
Then let du=eudu and substitute du:
∫ueudu
EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)
Now substitute u back in:
Ei(eu)
-
Let u=eu.
Then let du=eudu and substitute du:
∫ueudu
EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)
Now substitute u back in:
Ei(eu)
The result is: ueeu
Now substitute u back in:
eulog(u)
So, the result is: −eulog(u)
Now substitute u back in:
eu1log(u)
So, the result is: −eu1log(u)
Now substitute u back in:
exlog(x)
Method #2
-
Rewrite the integrand:
ex(log(x)+x1)=xxexlog(x)+ex
-
Let u=x1.
Then let du=−x2dx and substitute −du:
∫(−u2ueu1+eu1log(u1))du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2ueu1+eu1log(u1)du=−∫u2ueu1+eu1log(u1)du
-
Let u=eu1log(u1).
Then let du=(−ueu1−u2eu1log(u1))du and substitute −du:
∫(−1)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: −u
Now substitute u back in:
−eu1log(u1)
So, the result is: eu1log(u1)
Now substitute u back in:
exlog(x)
Method #3
-
Rewrite the integrand:
ex(log(x)+x1)=exlog(x)+xex
-
Integrate term-by-term:
-
Let u=log(x).
Then let du=xdx and substitute du:
∫ueueeudu
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(u)=u and let dv(u)=eueeu.
Then du(u)=1.
To find v(u):
-
Let u=eu.
Then let du=eudu and substitute du:
∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
Now substitute u back in:
Now evaluate the sub-integral.
-
Let u=eu.
Then let du=eudu and substitute du:
∫ueudu
EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)
Now substitute u back in:
Ei(eu)
Now substitute u back in:
exlog(x)−Ei(x)
EiRule(a=1, b=0, context=exp(x)/x, symbol=x)
The result is: exlog(x)
-
Add the constant of integration:
exlog(x)+constant
The answer is:
exlog(x)+constant
The answer (Indefinite)
[src]
/
|
| x /1 \ x
| E *|- + log(x)| dx = C + e *log(x)
| \x /
|
/
∫ex(log(x)+x1)dx=C+exlog(x)
Use the examples entering the upper and lower limits of integration.