Mister Exam

Other calculators

Integral of e^(x-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo          
  /          
 |           
 |   x - 2   
 |  E      dx
 |           
/            
0            
0ex2dx\int\limits_{0}^{\infty} e^{x - 2}\, dx
Integral(E^(x - 2), (x, 0, oo))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=x2u = x - 2.

      Then let du=dxdu = dx and substitute dudu:

      eudu\int e^{u}\, du

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      Now substitute uu back in:

      ex2e^{x - 2}

    Method #2

    1. Rewrite the integrand:

      ex2=exe2e^{x - 2} = \frac{e^{x}}{e^{2}}

    2. The integral of a constant times a function is the constant times the integral of the function:

      exe2dx=exdxe2\int \frac{e^{x}}{e^{2}}\, dx = \frac{\int e^{x}\, dx}{e^{2}}

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      So, the result is: exe2\frac{e^{x}}{e^{2}}

  2. Now simplify:

    ex2e^{x - 2}

  3. Add the constant of integration:

    ex2+constante^{x - 2}+ \mathrm{constant}


The answer is:

ex2+constante^{x - 2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 |  x - 2           x - 2
 | E      dx = C + e     
 |                       
/                        
ex2dx=C+ex2\int e^{x - 2}\, dx = C + e^{x - 2}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.130.15
The answer [src]
oo
\infty
=
=
oo
\infty
oo

    Use the examples entering the upper and lower limits of integration.