Mister Exam

Other calculators

Integral of e^(2*x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2            
  /            
 |             
 |   2*x - 1   
 |  E        dx
 |             
/              
1              
12e2x1dx\int\limits_{1}^{2} e^{2 x - 1}\, dx
Integral(E^(2*x - 1), (x, 1, 2))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2x1u = 2 x - 1.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      eu2du\int \frac{e^{u}}{2}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu2\frac{e^{u}}{2}

      Now substitute uu back in:

      e2x12\frac{e^{2 x - 1}}{2}

    Method #2

    1. Rewrite the integrand:

      e2x1=e2xee^{2 x - 1} = \frac{e^{2 x}}{e}

    2. The integral of a constant times a function is the constant times the integral of the function:

      e2xedx=e2xdxe\int \frac{e^{2 x}}{e}\, dx = \frac{\int e^{2 x}\, dx}{e}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu2du\int \frac{e^{u}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      So, the result is: e2x2e\frac{e^{2 x}}{2 e}

    Method #3

    1. Rewrite the integrand:

      e2x1=e2xee^{2 x - 1} = \frac{e^{2 x}}{e}

    2. The integral of a constant times a function is the constant times the integral of the function:

      e2xedx=e2xdxe\int \frac{e^{2 x}}{e}\, dx = \frac{\int e^{2 x}\, dx}{e}

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        eu2du\int \frac{e^{u}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu2\frac{e^{u}}{2}

        Now substitute uu back in:

        e2x2\frac{e^{2 x}}{2}

      So, the result is: e2x2e\frac{e^{2 x}}{2 e}

  2. Now simplify:

    e2x12\frac{e^{2 x - 1}}{2}

  3. Add the constant of integration:

    e2x12+constant\frac{e^{2 x - 1}}{2}+ \mathrm{constant}


The answer is:

e2x12+constant\frac{e^{2 x - 1}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                    2*x - 1
 |  2*x - 1          e       
 | E        dx = C + --------
 |                      2    
/                            
e2x1dx=C+e2x12\int e^{2 x - 1}\, dx = C + \frac{e^{2 x - 1}}{2}
The graph
1.002.001.101.201.301.401.501.601.701.801.90040
The answer [src]
 3    
e    E
-- - -
2    2
e2+e32- \frac{e}{2} + \frac{e^{3}}{2}
=
=
 3    
e    E
-- - -
2    2
e2+e32- \frac{e}{2} + \frac{e^{3}}{2}
exp(3)/2 - E/2
Numerical answer [src]
8.68362754736431
8.68362754736431

    Use the examples entering the upper and lower limits of integration.