Mister Exam

Other calculators

Integral of e^(3*x)*sin(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                 
  /                 
 |                  
 |   3*x            
 |  E   *sin(2*x) dx
 |                  
/                   
-oo                 
$$\int\limits_{-\infty}^{\infty} e^{3 x} \sin{\left(2 x \right)}\, dx$$
Integral(E^(3*x)*sin(2*x), (x, -oo, oo))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Don't know the steps in finding this integral.

            But the integral is

          So, the result is:

        1. Don't know the steps in finding this integral.

          But the integral is

        The result is:

      So, the result is:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                             
 |                             2     3*x        2     3*x             3*x       
 |  3*x                   2*cos (x)*e      2*sin (x)*e      6*cos(x)*e   *sin(x)
 | E   *sin(2*x) dx = C - -------------- + -------------- + --------------------
 |                              13               13                  13         
/                                                                               
$$\int e^{3 x} \sin{\left(2 x \right)}\, dx = C + \frac{2 e^{3 x} \sin^{2}{\left(x \right)}}{13} + \frac{6 e^{3 x} \sin{\left(x \right)} \cos{\left(x \right)}}{13} - \frac{2 e^{3 x} \cos^{2}{\left(x \right)}}{13}$$
The graph
The answer [src]
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
=
=
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
AccumBounds(-oo, oo)
Numerical answer [src]
3.06826157076743e+13000078344468995218
3.06826157076743e+13000078344468995218

    Use the examples entering the upper and lower limits of integration.