Mister Exam

Other calculators


e^(3*x)*sin(2*x)

Derivative of e^(3*x)*sin(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3*x         
E   *sin(2*x)
e3xsin(2x)e^{3 x} \sin{\left(2 x \right)}
E^(3*x)*sin(2*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=e3xf{\left(x \right)} = e^{3 x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=3xu = 3 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result of the chain rule is:

      3e3x3 e^{3 x}

    g(x)=sin(2x)g{\left(x \right)} = \sin{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2cos(2x)2 \cos{\left(2 x \right)}

    The result is: 3e3xsin(2x)+2e3xcos(2x)3 e^{3 x} \sin{\left(2 x \right)} + 2 e^{3 x} \cos{\left(2 x \right)}

  2. Now simplify:

    (3sin(2x)+2cos(2x))e3x\left(3 \sin{\left(2 x \right)} + 2 \cos{\left(2 x \right)}\right) e^{3 x}


The answer is:

(3sin(2x)+2cos(2x))e3x\left(3 \sin{\left(2 x \right)} + 2 \cos{\left(2 x \right)}\right) e^{3 x}

The graph
02468-8-6-4-2-1010-5000000000000050000000000000
The first derivative [src]
            3*x      3*x         
2*cos(2*x)*e    + 3*e   *sin(2*x)
3e3xsin(2x)+2e3xcos(2x)3 e^{3 x} \sin{\left(2 x \right)} + 2 e^{3 x} \cos{\left(2 x \right)}
The second derivative [src]
                            3*x
(5*sin(2*x) + 12*cos(2*x))*e   
(5sin(2x)+12cos(2x))e3x\left(5 \sin{\left(2 x \right)} + 12 \cos{\left(2 x \right)}\right) e^{3 x}
The third derivative [src]
                             3*x
(-9*sin(2*x) + 46*cos(2*x))*e   
(9sin(2x)+46cos(2x))e3x\left(- 9 \sin{\left(2 x \right)} + 46 \cos{\left(2 x \right)}\right) e^{3 x}
The graph
Derivative of e^(3*x)*sin(2*x)