Mister Exam

Other calculators


e^(sinx)*cosx

Integral of e^(sinx)*cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |   sin(x)          
 |  E      *cos(x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$
Integral(E^sin(x)*cos(x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of the exponential function is itself.

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |  sin(x)                  sin(x)
 | E      *cos(x) dx = C + e      
 |                                
/                                 
$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = C + e^{\sin{\left(x \right)}}$$
The graph
The answer [src]
      sin(1)
-1 + e      
$$-1 + e^{\sin{\left(1 \right)}}$$
=
=
      sin(1)
-1 + e      
$$-1 + e^{\sin{\left(1 \right)}}$$
-1 + exp(sin(1))
Numerical answer [src]
1.31977682471585
1.31977682471585
The graph
Integral of e^(sinx)*cosx dx

    Use the examples entering the upper and lower limits of integration.