Mister Exam

Other calculators

Integral of e^(sinx)d(sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |   sin(x)            
 |  E      *d*sin(x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} e^{\sin{\left(x \right)}} d \sin{\left(x \right)}\, dx$$
Integral((E^sin(x)*d)*sin(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                              /                 
 |                              |                  
 |  sin(x)                      |  sin(x)          
 | E      *d*sin(x) dx = C + d* | e      *sin(x) dx
 |                              |                  
/                              /                   
$$\int e^{\sin{\left(x \right)}} d \sin{\left(x \right)}\, dx = C + d \int e^{\sin{\left(x \right)}} \sin{\left(x \right)}\, dx$$
The answer [src]
    1                  
    /                  
   |                   
   |   sin(x)          
d* |  e      *sin(x) dx
   |                   
  /                    
  0                    
$$d \int\limits_{0}^{1} e^{\sin{\left(x \right)}} \sin{\left(x \right)}\, dx$$
=
=
    1                  
    /                  
   |                   
   |   sin(x)          
d* |  e      *sin(x) dx
   |                   
  /                    
  0                    
$$d \int\limits_{0}^{1} e^{\sin{\left(x \right)}} \sin{\left(x \right)}\, dx$$
d*Integral(exp(sin(x))*sin(x), (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.