1 / | | sin(x) | E *d*sin(x) dx | / 0
Integral((E^sin(x)*d)*sin(x), (x, 0, 1))
/ / | | | sin(x) | sin(x) | E *d*sin(x) dx = C + d* | e *sin(x) dx | | / /
1 / | | sin(x) d* | e *sin(x) dx | / 0
=
1 / | | sin(x) d* | e *sin(x) dx | / 0
d*Integral(exp(sin(x))*sin(x), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.