Mister Exam

Other calculators


e^(-1/x)

Integral of e^(-1/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |   -1    
 |   ---   
 |    x    
 |  E    dx
 |         
/          
0          
$$\int\limits_{0}^{1} e^{- \frac{1}{x}}\, dx$$
Integral(E^(-1/x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                
 |                                 
 |  -1              -1             
 |  ---             ---     / pi*I\
 |   x               x      |e    |
 | E    dx = C + x*e    + Ei|-----|
 |                          \  x  /
/                                  
$$\int e^{- \frac{1}{x}}\, dx = C + x e^{- \frac{1}{x}} + \operatorname{Ei}{\left(\frac{e^{i \pi}}{x} \right)}$$
The graph
The answer [src]
  / pi*I\    -1
Ei\e    / + e  
$$e^{-1} + \operatorname{Ei}{\left(e^{i \pi} \right)}$$
=
=
  / pi*I\    -1
Ei\e    / + e  
$$e^{-1} + \operatorname{Ei}{\left(e^{i \pi} \right)}$$
Ei(exp_polar(pi*i)) + exp(-1)
Numerical answer [src]
0.148495506775922
0.148495506775922
The graph
Integral of e^(-1/x) dx

    Use the examples entering the upper and lower limits of integration.