Mister Exam

Integral of e^(-2y) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo         
  /         
 |          
 |   -2*y   
 |  E     dy
 |          
/           
-oo         
$$\int\limits_{-\infty}^{\infty} e^{- 2 y}\, dy$$
Integral(E^(-2*y), (y, -oo, oo))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of the exponential function is itself.

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                    
 |                 -2*y
 |  -2*y          e    
 | E     dy = C - -----
 |                  2  
/                      
$$\int e^{- 2 y}\, dy = C - \frac{e^{- 2 y}}{2}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
7.77252003987246e+8666718896312663485
7.77252003987246e+8666718896312663485

    Use the examples entering the upper and lower limits of integration.