Mister Exam

Other calculators

Integral of e^(-2x)*sin(x)*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi               
   /                
  |                 
  |   -2*x          
  |  E    *sin(x) dx
  |                 
 /                  
 0                  
$$\int\limits_{0}^{2 \pi} e^{- 2 x} \sin{\left(x \right)}\, dx$$
Integral(E^(-2*x)*sin(x), (x, 0, 2*pi))
The answer (Indefinite) [src]
  /                                                   
 |                          -2*x                  -2*x
 |  -2*x                 2*e    *sin(x)   cos(x)*e    
 | E    *sin(x) dx = C - -------------- - ------------
 |                             5               5      
/                                                     
$$\int e^{- 2 x} \sin{\left(x \right)}\, dx = C - \frac{2 e^{- 2 x} \sin{\left(x \right)}}{5} - \frac{e^{- 2 x} \cos{\left(x \right)}}{5}$$
The graph
The answer [src]
     -4*pi
1   e     
- - ------
5     5   
$$\frac{1}{5} - \frac{1}{5 e^{4 \pi}}$$
=
=
     -4*pi
1   e     
- - ------
5     5   
$$\frac{1}{5} - \frac{1}{5 e^{4 \pi}}$$
1/5 - exp(-4*pi)/5
Numerical answer [src]
0.199999302531529
0.199999302531529

    Use the examples entering the upper and lower limits of integration.