Mister Exam

Other calculators

Integral of e^(-2x)*sin2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |   -2*x            
 |  e    *sin(2*x) dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} e^{- 2 x} \sin{\left(2 x \right)}\, dx$$
Integral(sin(2*x)/E^(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. Use integration by parts, noting that the integrand eventually repeats itself.

            1. For the integrand :

              Let and let .

              Then .

            2. For the integrand :

              Let and let .

              Then .

            3. Notice that the integrand has repeated itself, so move it to one side:

              Therefore,

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Use integration by parts, noting that the integrand eventually repeats itself.

      1. For the integrand :

        Let and let .

        Then .

      2. For the integrand :

        Let and let .

        Then .

      3. Notice that the integrand has repeated itself, so move it to one side:

        Therefore,

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       
 |                                   -2*x    -2*x         
 |  -2*x                   cos(2*x)*e       e    *sin(2*x)
 | e    *sin(2*x) dx = C - -------------- - --------------
 |                               4                4       
/                                                         
$$\int e^{- 2 x} \sin{\left(2 x \right)}\, dx = C - \frac{e^{- 2 x} \sin{\left(2 x \right)}}{4} - \frac{e^{- 2 x} \cos{\left(2 x \right)}}{4}$$
The answer [src]
            -2    -2       
1   cos(2)*e     e  *sin(2)
- - ---------- - ----------
4       4            4     
$$- \frac{\sin{\left(2 \right)}}{4 e^{2}} - \frac{\cos{\left(2 \right)}}{4 e^{2}} + \frac{1}{4}$$
=
=
            -2    -2       
1   cos(2)*e     e  *sin(2)
- - ---------- - ----------
4       4            4     
$$- \frac{\sin{\left(2 \right)}}{4 e^{2}} - \frac{\cos{\left(2 \right)}}{4 e^{2}} + \frac{1}{4}$$
Numerical answer [src]
0.233314831296588
0.233314831296588

    Use the examples entering the upper and lower limits of integration.