Mister Exam

Other calculators

Integral of e^(ax)sin(bx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |   a*x            
 |  e   *sin(b*x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} e^{a x} \sin{\left(b x \right)}\, dx$$
Integral(E^(a*x)*sin(b*x), (x, 0, 1))
The answer (Indefinite) [src]
                                                          //                         /cos(b*x)   x*sin(b*x)                                                \
                                                          ||                         |-------- + ----------  for b != 0                                    |
                                                          ||                         |    2          b                                                     |
                                                          ||                         |   b                                                                 |
                                                          ||                         <                                                            for a = 0|
                                                          ||                         |          2                                                          |
                                                          ||                         |         x                                                           |
                                                          ||                         |         --            otherwise                                     |
                                                          ||                         \         2                                                           |
                                                          ||                                                                                               |
                                                          ||/                             x                                for And(a = 0, b = 0)           |
  /                       // x    for a = 0\              |||                                                                                              |
 |                        ||               |              |||            -I*b*x    -I*b*x                 -I*b*x                                           |
 |  a*x                   || a*x           |              |||x*cos(b*x)*e         e      *sin(b*x)   I*x*e      *sin(b*x)                                  |
 | e   *sin(b*x) dx = C + |
            
$${{e^{a\,x}\,\left(a\,\sin \left(b\,x\right)-b\,\cos \left(b\,x \right)\right)}\over{b^2+a^2}}$$
The answer [src]
/                        0                                        for Or(And(a = 0, b = 0), And(a = 0, a = -I*b, b = 0), And(a = 0, a = I*b, b = 0), And(a = 0, a = -I*b, a = I*b, b = 0))             
|                                                                                                                                                                                                      
|       -I*b                    -I*b           -I*b                                                                                                                                                    
| 1    e    *sin(b)   I*cos(b)*e       cos(b)*e                                                                                                                                                        
|--- + ------------ - -------------- - ------------  for Or(And(a = 0, a = -I*b), And(a = -I*b, a = I*b), And(a = -I*b, b = 0), And(a = 0, a = -I*b, a = I*b), And(a = -I*b, a = I*b, b = 0), a = -I*b)
|2*b        2               2              2*b                                                                                                                                                         
|                                                                                                                                                                                                      
|        I*b                    I*b           I*b                                                                                                                                                      
<  1    e   *sin(b)   I*cos(b)*e      cos(b)*e                                                                                                                                                         
| --- + ----------- + ------------- - -----------                                                for Or(And(a = 0, a = I*b), And(a = I*b, b = 0), a = I*b)                                             
| 2*b        2              2             2*b                                                                                                                                                          
|                                                                                                                                                                                                      
|                    a                    a                                                                                                                                                            
|          b      a*e *sin(b)   b*cos(b)*e                                                                                                                                                             
|       ------- + ----------- - -----------                                                                              otherwise                                                                     
|        2    2      2    2        2    2                                                                                                                                                              
\       a  + b      a  + b        a  + b                                                                                                                                                               
$${{a\,e^{a}\,\sin b-e^{a}\,b\,\cos b}\over{b^2+a^2}}+{{b}\over{b^2+a ^2}}$$
=
=
/                        0                                        for Or(And(a = 0, b = 0), And(a = 0, a = -I*b, b = 0), And(a = 0, a = I*b, b = 0), And(a = 0, a = -I*b, a = I*b, b = 0))             
|                                                                                                                                                                                                      
|       -I*b                    -I*b           -I*b                                                                                                                                                    
| 1    e    *sin(b)   I*cos(b)*e       cos(b)*e                                                                                                                                                        
|--- + ------------ - -------------- - ------------  for Or(And(a = 0, a = -I*b), And(a = -I*b, a = I*b), And(a = -I*b, b = 0), And(a = 0, a = -I*b, a = I*b), And(a = -I*b, a = I*b, b = 0), a = -I*b)
|2*b        2               2              2*b                                                                                                                                                         
|                                                                                                                                                                                                      
|        I*b                    I*b           I*b                                                                                                                                                      
<  1    e   *sin(b)   I*cos(b)*e      cos(b)*e                                                                                                                                                         
| --- + ----------- + ------------- - -----------                                                for Or(And(a = 0, a = I*b), And(a = I*b, b = 0), a = I*b)                                             
| 2*b        2              2             2*b                                                                                                                                                          
|                                                                                                                                                                                                      
|                    a                    a                                                                                                                                                            
|          b      a*e *sin(b)   b*cos(b)*e                                                                                                                                                             
|       ------- + ----------- - -----------                                                                              otherwise                                                                     
|        2    2      2    2        2    2                                                                                                                                                              
\       a  + b      a  + b        a  + b                                                                                                                                                               
$$\begin{cases} 0 & \text{for}\: \left(a = 0 \wedge b = 0\right) \vee \left(a = 0 \wedge a = - i b \wedge b = 0\right) \vee \left(a = 0 \wedge a = i b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - i b \wedge a = i b \wedge b = 0\right) \\\frac{e^{- i b} \sin{\left(b \right)}}{2} - \frac{i e^{- i b} \cos{\left(b \right)}}{2} + \frac{1}{2 b} - \frac{e^{- i b} \cos{\left(b \right)}}{2 b} & \text{for}\: \left(a = 0 \wedge a = - i b\right) \vee \left(a = - i b \wedge a = i b\right) \vee \left(a = - i b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - i b \wedge a = i b\right) \vee \left(a = - i b \wedge a = i b \wedge b = 0\right) \vee a = - i b \\\frac{e^{i b} \sin{\left(b \right)}}{2} + \frac{i e^{i b} \cos{\left(b \right)}}{2} - \frac{e^{i b} \cos{\left(b \right)}}{2 b} + \frac{1}{2 b} & \text{for}\: \left(a = 0 \wedge a = i b\right) \vee \left(a = i b \wedge b = 0\right) \vee a = i b \\\frac{a e^{a} \sin{\left(b \right)}}{a^{2} + b^{2}} - \frac{b e^{a} \cos{\left(b \right)}}{a^{2} + b^{2}} + \frac{b}{a^{2} + b^{2}} & \text{otherwise} \end{cases}$$

    Use the examples entering the upper and lower limits of integration.