Integral of e^7xcos4xdx dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=xe7 and let dv(x)=cos(4x).
Then du(x)=e7.
To find v(x):
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫4e7sin(4x)dx=4e7∫sin(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫4sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=4∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −4cos(u)
Now substitute u back in:
−4cos(4x)
So, the result is: −16e7cos(4x)
-
Now simplify:
16(4xsin(4x)+cos(4x))e7
-
Add the constant of integration:
16(4xsin(4x)+cos(4x))e7+constant
The answer is:
16(4xsin(4x)+cos(4x))e7+constant
The answer (Indefinite)
[src]
/
| 7 7
| 7 cos(4*x)*e x*e *sin(4*x)
| E *x*cos(4*x) dx = C + ----------- + -------------
| 16 4
/
∫e7xcos(4x)dx=C+4xe7sin(4x)+16e7cos(4x)
7
e /cos(n) n*sin(n)\ 7
- -- + |------ + --------|*e
16 \ 16 16 /
(16nsin(n)+16cos(n))e7−16e7
=
7
e /cos(n) n*sin(n)\ 7
- -- + |------ + --------|*e
16 \ 16 16 /
(16nsin(n)+16cos(n))e7−16e7
-exp(7)/16 + (cos(n)/16 + n*sin(n)/16)*exp(7)
Use the examples entering the upper and lower limits of integration.