Mister Exam

Integral of e^7xcos4xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  n                 
  -                 
  4                 
  /                 
 |                  
 |   7              
 |  E *x*cos(4*x) dx
 |                  
/                   
0                   
0n4e7xcos(4x)dx\int\limits_{0}^{\frac{n}{4}} e^{7} x \cos{\left(4 x \right)}\, dx
Integral((E^7*x)*cos(4*x), (x, 0, n/4))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xe7u{\left(x \right)} = x e^{7} and let dv(x)=cos(4x)\operatorname{dv}{\left(x \right)} = \cos{\left(4 x \right)}.

    Then du(x)=e7\operatorname{du}{\left(x \right)} = e^{7}.

    To find v(x)v{\left(x \right)}:

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du4\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)4\frac{\sin{\left(u \right)}}{4}

      Now substitute uu back in:

      sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    e7sin(4x)4dx=e7sin(4x)dx4\int \frac{e^{7} \sin{\left(4 x \right)}}{4}\, dx = \frac{e^{7} \int \sin{\left(4 x \right)}\, dx}{4}

    1. Let u=4xu = 4 x.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      sin(u)4du\int \frac{\sin{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        sin(u)du=sin(u)du4\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{4}

        1. The integral of sine is negative cosine:

          sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

        So, the result is: cos(u)4- \frac{\cos{\left(u \right)}}{4}

      Now substitute uu back in:

      cos(4x)4- \frac{\cos{\left(4 x \right)}}{4}

    So, the result is: e7cos(4x)16- \frac{e^{7} \cos{\left(4 x \right)}}{16}

  3. Now simplify:

    (4xsin(4x)+cos(4x))e716\frac{\left(4 x \sin{\left(4 x \right)} + \cos{\left(4 x \right)}\right) e^{7}}{16}

  4. Add the constant of integration:

    (4xsin(4x)+cos(4x))e716+constant\frac{\left(4 x \sin{\left(4 x \right)} + \cos{\left(4 x \right)}\right) e^{7}}{16}+ \mathrm{constant}


The answer is:

(4xsin(4x)+cos(4x))e716+constant\frac{\left(4 x \sin{\left(4 x \right)} + \cos{\left(4 x \right)}\right) e^{7}}{16}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                  
 |                                  7      7         
 |  7                     cos(4*x)*e    x*e *sin(4*x)
 | E *x*cos(4*x) dx = C + ----------- + -------------
 |                             16             4      
/                                                    
e7xcos(4x)dx=C+xe7sin(4x)4+e7cos(4x)16\int e^{7} x \cos{\left(4 x \right)}\, dx = C + \frac{x e^{7} \sin{\left(4 x \right)}}{4} + \frac{e^{7} \cos{\left(4 x \right)}}{16}
The answer [src]
   7                         
  e    /cos(n)   n*sin(n)\  7
- -- + |------ + --------|*e 
  16   \  16        16   /   
(nsin(n)16+cos(n)16)e7e716\left(\frac{n \sin{\left(n \right)}}{16} + \frac{\cos{\left(n \right)}}{16}\right) e^{7} - \frac{e^{7}}{16}
=
=
   7                         
  e    /cos(n)   n*sin(n)\  7
- -- + |------ + --------|*e 
  16   \  16        16   /   
(nsin(n)16+cos(n)16)e7e716\left(\frac{n \sin{\left(n \right)}}{16} + \frac{\cos{\left(n \right)}}{16}\right) e^{7} - \frac{e^{7}}{16}
-exp(7)/16 + (cos(n)/16 + n*sin(n)/16)*exp(7)

    Use the examples entering the upper and lower limits of integration.