Mister Exam

Other calculators

Integral of e^(2x)/(e^(2x)+5)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     2*x     
 |    E        
 |  -------- dx
 |   2*x       
 |  E    + 5   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{e^{2 x}}{e^{2 x} + 5}\, dx$$
Integral(E^(2*x)/(E^(2*x) + 5), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is .

            So, the result is:

          Now substitute back in:

        Method #2

        1. Rewrite the integrand:

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      Now substitute back in:

    Method #3

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                   
 |    2*x               /        2*x\
 |   E               log\10 + 2*e   /
 | -------- dx = C + ----------------
 |  2*x                     2        
 | E    + 5                          
 |                                   
/                                    
$$\int \frac{e^{2 x}}{e^{2 x} + 5}\, dx = C + \frac{\log{\left(2 e^{2 x} + 10 \right)}}{2}$$
The graph
The answer [src]
   /     2\         
log\5 + e /   log(6)
----------- - ------
     2          2   
$$- \frac{\log{\left(6 \right)}}{2} + \frac{\log{\left(5 + e^{2} \right)}}{2}$$
=
=
   /     2\         
log\5 + e /   log(6)
----------- - ------
     2          2   
$$- \frac{\log{\left(6 \right)}}{2} + \frac{\log{\left(5 + e^{2} \right)}}{2}$$
log(5 + exp(2))/2 - log(6)/2
Numerical answer [src]
0.362527020509745
0.362527020509745

    Use the examples entering the upper and lower limits of integration.