Mister Exam

Other calculators


e^(2x)cos(3x)

Integral of e^(2x)cos(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |   2*x            
 |  e   *cos(3*x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} e^{2 x} \cos{\left(3 x \right)}\, dx$$
Integral(E^(2*x)*cos(3*x), (x, 0, 1))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand :

      Let and let .

      Then .

    2. For the integrand :

      Let and let .

      Then .

    3. Notice that the integrand has repeated itself, so move it to one side:

      Therefore,

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                                    2*x      2*x         
 |  2*x                   2*cos(3*x)*e      3*e   *sin(3*x)
 | e   *cos(3*x) dx = C + --------------- + ---------------
 |                               13                13      
/                                                          
$$\int e^{2 x} \cos{\left(3 x \right)}\, dx = C + \frac{3 e^{2 x} \sin{\left(3 x \right)}}{13} + \frac{2 e^{2 x} \cos{\left(3 x \right)}}{13}$$
The graph
The answer [src]
                 2      2       
  2    2*cos(3)*e    3*e *sin(3)
- -- + ----------- + -----------
  13        13            13    
$$\frac{2 e^{2} \cos{\left(3 \right)}}{13} - \frac{2}{13} + \frac{3 e^{2} \sin{\left(3 \right)}}{13}$$
=
=
                 2      2       
  2    2*cos(3)*e    3*e *sin(3)
- -- + ----------- + -----------
  13        13            13    
$$\frac{2 e^{2} \cos{\left(3 \right)}}{13} - \frac{2}{13} + \frac{3 e^{2} \sin{\left(3 \right)}}{13}$$
Numerical answer [src]
-1.03861455546881
-1.03861455546881
The graph
Integral of e^(2x)cos(3x) dx

    Use the examples entering the upper and lower limits of integration.