Mister Exam

Other calculators

Integral of (e^3x-2cosx/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  / 3     2*cos(x)\   
 |  |E *x - --------| dx
 |  \          2    /   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(e^{3} x - \frac{2 \cos{\left(x \right)}}{2}\right)\, dx$$
Integral(E^3*x - 2*cos(x)/2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                      2  3
 | / 3     2*cos(x)\                   x *e 
 | |E *x - --------| dx = C - sin(x) + -----
 | \          2    /                     2  
 |                                          
/                                           
$$\int \left(e^{3} x - \frac{2 \cos{\left(x \right)}}{2}\right)\, dx = C + \frac{x^{2} e^{3}}{2} - \sin{\left(x \right)}$$
The graph
The answer [src]
 3         
e          
-- - sin(1)
2          
$$- \sin{\left(1 \right)} + \frac{e^{3}}{2}$$
=
=
 3         
e          
-- - sin(1)
2          
$$- \sin{\left(1 \right)} + \frac{e^{3}}{2}$$
exp(3)/2 - sin(1)
Numerical answer [src]
9.20129747678594
9.20129747678594

    Use the examples entering the upper and lower limits of integration.