Mister Exam

Other calculators

Integral of dz/(z^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    1      
 |  ------ dz
 |   2       
 |  z  + 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{z^{2} + 1}\, dz$$
Integral(1/(z^2 + 1), (z, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 |   1      
 | ------ dz
 |  2       
 | z  + 1   
 |          
/           
Rewrite the integrand
  1            1      
------ = -------------
 2         /    2    \
z  + 1   1*\(-z)  + 1/
or
  /           
 |            
 |   1        
 | ------ dz  
 |  2        =
 | z  + 1     
 |            
/             
  
  /            
 |             
 |     1       
 | --------- dz
 |     2       
 | (-z)  + 1   
 |             
/              
In the integral
  /            
 |             
 |     1       
 | --------- dz
 |     2       
 | (-z)  + 1   
 |             
/              
do replacement
v = -z
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv = atan(v)
 |      2             
 | 1 + v              
 |                    
/                     
do backward replacement
  /                      
 |                       
 |     1                 
 | --------- dz = atan(z)
 |     2                 
 | (-z)  + 1             
 |                       
/                        
Solution is:
C + atan(z)
The answer (Indefinite) [src]
  /                       
 |                        
 |   1                    
 | ------ dz = C + atan(z)
 |  2                     
 | z  + 1                 
 |                        
/                         
$$\int \frac{1}{z^{2} + 1}\, dz = C + \operatorname{atan}{\left(z \right)}$$
The graph
The answer [src]
pi
--
4 
$$\frac{\pi}{4}$$
=
=
pi
--
4 
$$\frac{\pi}{4}$$
pi/4
Numerical answer [src]
0.785398163397448
0.785398163397448

    Use the examples entering the upper and lower limits of integration.