Mister Exam

Integral of dx/xln4x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  log(4*x)   
 |  -------- dx
 |     x       
 |             
/              
0              
01log(4x)xdx\int\limits_{0}^{1} \frac{\log{\left(4 x \right)}}{x}\, dx
Integral(log(4*x)/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (log(1u)+2log(2)u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)} + 2 \log{\left(2 \right)}}{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(1u)+2log(2)udu=log(1u)+2log(2)udu\int \frac{\log{\left(\frac{1}{u} \right)} + 2 \log{\left(2 \right)}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)} + 2 \log{\left(2 \right)}}{u}\, du

        1. Let u=1uu = \frac{1}{u}.

          Then let du=duu2du = - \frac{du}{u^{2}} and substitute du- du:

          (log(u)+2log(2)u)du\int \left(- \frac{\log{\left(u \right)} + 2 \log{\left(2 \right)}}{u}\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            log(u)+2log(2)udu=log(u)+2log(2)udu\int \frac{\log{\left(u \right)} + 2 \log{\left(2 \right)}}{u}\, du = - \int \frac{\log{\left(u \right)} + 2 \log{\left(2 \right)}}{u}\, du

            1. Let u=log(u)+2log(2)u = \log{\left(u \right)} + 2 \log{\left(2 \right)}.

              Then let du=duudu = \frac{du}{u} and substitute dudu:

              udu\int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              Now substitute uu back in:

              (log(u)+2log(2))22\frac{\left(\log{\left(u \right)} + 2 \log{\left(2 \right)}\right)^{2}}{2}

            So, the result is: (log(u)+2log(2))22- \frac{\left(\log{\left(u \right)} + 2 \log{\left(2 \right)}\right)^{2}}{2}

          Now substitute uu back in:

          (log(u)+2log(2))22- \frac{\left(- \log{\left(u \right)} + 2 \log{\left(2 \right)}\right)^{2}}{2}

        So, the result is: (log(u)+2log(2))22\frac{\left(- \log{\left(u \right)} + 2 \log{\left(2 \right)}\right)^{2}}{2}

      Now substitute uu back in:

      (log(x)+2log(2))22\frac{\left(\log{\left(x \right)} + 2 \log{\left(2 \right)}\right)^{2}}{2}

    Method #2

    1. Rewrite the integrand:

      log(4x)x=log(x)+2log(2)x\frac{\log{\left(4 x \right)}}{x} = \frac{\log{\left(x \right)} + 2 \log{\left(2 \right)}}{x}

    2. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (log(1u)+2log(2)u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)} + 2 \log{\left(2 \right)}}{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(1u)+2log(2)udu=log(1u)+2log(2)udu\int \frac{\log{\left(\frac{1}{u} \right)} + 2 \log{\left(2 \right)}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)} + 2 \log{\left(2 \right)}}{u}\, du

        1. Let u=log(1u)+2log(2)u = \log{\left(\frac{1}{u} \right)} + 2 \log{\left(2 \right)}.

          Then let du=duudu = - \frac{du}{u} and substitute du- du:

          (u)du\int \left(- u\right)\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            udu=udu\int u\, du = - \int u\, du

            1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

              udu=u22\int u\, du = \frac{u^{2}}{2}

            So, the result is: u22- \frac{u^{2}}{2}

          Now substitute uu back in:

          (log(1u)+2log(2))22- \frac{\left(\log{\left(\frac{1}{u} \right)} + 2 \log{\left(2 \right)}\right)^{2}}{2}

        So, the result is: (log(1u)+2log(2))22\frac{\left(\log{\left(\frac{1}{u} \right)} + 2 \log{\left(2 \right)}\right)^{2}}{2}

      Now substitute uu back in:

      (log(x)+2log(2))22\frac{\left(\log{\left(x \right)} + 2 \log{\left(2 \right)}\right)^{2}}{2}

    Method #3

    1. Rewrite the integrand:

      log(4x)x=log(x)x+2log(2)x\frac{\log{\left(4 x \right)}}{x} = \frac{\log{\left(x \right)}}{x} + \frac{2 \log{\left(2 \right)}}{x}

    2. Integrate term-by-term:

      1. Let u=1xu = \frac{1}{x}.

        Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

        (log(1u)u)du\int \left(- \frac{\log{\left(\frac{1}{u} \right)}}{u}\right)\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          log(1u)udu=log(1u)udu\int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du = - \int \frac{\log{\left(\frac{1}{u} \right)}}{u}\, du

          1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

            Then let du=duudu = - \frac{du}{u} and substitute du- du:

            (u)du\int \left(- u\right)\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              udu=udu\int u\, du = - \int u\, du

              1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

                udu=u22\int u\, du = \frac{u^{2}}{2}

              So, the result is: u22- \frac{u^{2}}{2}

            Now substitute uu back in:

            log(1u)22- \frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

          So, the result is: log(1u)22\frac{\log{\left(\frac{1}{u} \right)}^{2}}{2}

        Now substitute uu back in:

        log(x)22\frac{\log{\left(x \right)}^{2}}{2}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2log(2)xdx=2log(2)1xdx\int \frac{2 \log{\left(2 \right)}}{x}\, dx = 2 \log{\left(2 \right)} \int \frac{1}{x}\, dx

        1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

        So, the result is: 2log(2)log(x)2 \log{\left(2 \right)} \log{\left(x \right)}

      The result is: log(x)22+2log(2)log(x)\frac{\log{\left(x \right)}^{2}}{2} + 2 \log{\left(2 \right)} \log{\left(x \right)}

  2. Now simplify:

    log(4x)22\frac{\log{\left(4 x \right)}^{2}}{2}

  3. Add the constant of integration:

    log(4x)22+constant\frac{\log{\left(4 x \right)}^{2}}{2}+ \mathrm{constant}


The answer is:

log(4x)22+constant\frac{\log{\left(4 x \right)}^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                      
 |                                      2
 | log(4*x)          (2*log(2) + log(x)) 
 | -------- dx = C + --------------------
 |    x                       2          
 |                                       
/                                        
log(4x)xdx=C+(log(x)+2log(2))22\int \frac{\log{\left(4 x \right)}}{x}\, dx = C + \frac{\left(\log{\left(x \right)} + 2 \log{\left(2 \right)}\right)^{2}}{2}
The answer [src]
-oo
-\infty
=
=
-oo
-\infty
-oo
Numerical answer [src]
-910.841526560512
-910.841526560512

    Use the examples entering the upper and lower limits of integration.