Mister Exam

Other calculators

Integral of (dx)/(x(ln^2x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |    /   2       \   
 |  x*\log (x) + 1/   
 |                    
/                     
0                     
$$\int\limits_{0}^{0} \frac{1}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx$$
Integral(1/(x*(log(x)^2 + 1)), (x, 0, 0))
The answer (Indefinite) [src]
  /                                                                    
 |                                                                     
 |        1                        /   2                              \
 | --------------- dx = C + RootSum\4*z  + 1, i -> i*log(2*i + log(x))/
 |   /   2       \                                                     
 | x*\log (x) + 1/                                                     
 |                                                                     
/                                                                      
$$\int \frac{1}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx = C + \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(x \right)} \right)} \right)\right)}$$
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.