Mister Exam

Other calculators

Integral of dx/(3+5*cos*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |  3 + 5*cos(x)   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{5 \cos{\left(x \right)} + 3}\, dx$$
Integral(1/(3 + 5*cos(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                         /        /x\\      /       /x\\
 |                       log|-2 + tan|-||   log|2 + tan|-||
 |      1                   \        \2//      \       \2//
 | ------------ dx = C - ---------------- + ---------------
 | 3 + 5*cos(x)                 4                  4       
 |                                                         
/                                                          
$$\int \frac{1}{5 \cos{\left(x \right)} + 3}\, dx = C - \frac{\log{\left(\tan{\left(\frac{x}{2} \right)} - 2 \right)}}{4} + \frac{\log{\left(\tan{\left(\frac{x}{2} \right)} + 2 \right)}}{4}$$
The graph
The answer [src]
  log(2 - tan(1/2))   log(2 + tan(1/2))
- ----------------- + -----------------
          4                   4        
$$- \frac{\log{\left(2 - \tan{\left(\frac{1}{2} \right)} \right)}}{4} + \frac{\log{\left(\tan{\left(\frac{1}{2} \right)} + 2 \right)}}{4}$$
=
=
  log(2 - tan(1/2))   log(2 + tan(1/2))
- ----------------- + -----------------
          4                   4        
$$- \frac{\log{\left(2 - \tan{\left(\frac{1}{2} \right)} \right)}}{4} + \frac{\log{\left(\tan{\left(\frac{1}{2} \right)} + 2 \right)}}{4}$$
-log(2 - tan(1/2))/4 + log(2 + tan(1/2))/4
Numerical answer [src]
0.140132996307221
0.140132996307221

    Use the examples entering the upper and lower limits of integration.