1 / | | 1 | ----------- dx | ________ | / 2 | \/ 3 - x | / 0
Integral(1/(sqrt(3 - x^2)), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sqrt(3)*sin(_theta), rewritten=1, substep=ConstantRule(constant=1, context=1, symbol=_theta), restriction=(x < sqrt(3)) & (x > -sqrt(3)), context=1/(sqrt(3 - x**2)), symbol=x)
Add the constant of integration:
The answer is:
/ | // / ___\ \ | 1 || |x*\/ 3 | / ___ ___\| | ----------- dx = C + |-\/ 3 , x < \/ 3 /| | ________ || \ 3 / | | / 2 \\ / | \/ 3 - x | /
/ ___\ |\/ 3 | asin|-----| \ 3 /
=
/ ___\ |\/ 3 | asin|-----| \ 3 /
asin(sqrt(3)/3)
Use the examples entering the upper and lower limits of integration.