Integral of dx/(sin^6x) dx
The solution
Detail solution
-
Rewrite the integrand:
csc6(x)=(cot2(x)+1)2csc2(x)
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(cot2(x)+1)2csc2(x)=cot4(x)csc2(x)+2cot2(x)csc2(x)+csc2(x)
-
Integrate term-by-term:
-
Let u=cot(x).
Then let du=(−cot2(x)−1)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cot5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cot2(x)csc2(x)dx=2∫cot2(x)csc2(x)dx
-
Let u=cot(x).
Then let du=(−cot2(x)−1)dx and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cot3(x)
So, the result is: −32cot3(x)
-
∫csc2(x)dx=−cot(x)
The result is: −5cot5(x)−32cot3(x)−cot(x)
Method #2
-
Rewrite the integrand:
(cot2(x)+1)2csc2(x)=cot4(x)csc2(x)+2cot2(x)csc2(x)+csc2(x)
-
Integrate term-by-term:
-
Let u=cot(x).
Then let du=(−cot2(x)−1)dx and substitute −du:
∫u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u4)du=−∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: −5u5
Now substitute u back in:
−5cot5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cot2(x)csc2(x)dx=2∫cot2(x)csc2(x)dx
-
Let u=cot(x).
Then let du=(−cot2(x)−1)dx and substitute −du:
∫u2du
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u2)du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3cot3(x)
So, the result is: −32cot3(x)
-
∫csc2(x)dx=−cot(x)
The result is: −5cot5(x)−32cot3(x)−cot(x)
-
Add the constant of integration:
−5cot5(x)−32cot3(x)−cot(x)+constant
The answer is:
−5cot5(x)−32cot3(x)−cot(x)+constant
The answer (Indefinite)
[src]
/
| 3 5
| 1 2*cot (x) cot (x)
| 1*------- dx = C - cot(x) - --------- - -------
| 6 3 5
| sin (x)
|
/
−15tan5x15tan4x+10tan2x+3
The graph
Use the examples entering the upper and lower limits of integration.