Mister Exam

Other calculators

Integral of dx/1-cos^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                   
 --                   
 2                    
  /                   
 |                    
 |  /         2   \   
 |  \1.0 - cos (x)/ dx
 |                    
/                     
pi                    
--                    
40                    
$$\int\limits_{\frac{\pi}{40}}^{\frac{\pi}{2}} \left(1.0 - \cos^{2}{\left(x \right)}\right)\, dx$$
Integral(1.0 - cos(x)^2, (x, pi/40, pi/2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                                          
 | /         2   \          sin(2*x)        
 | \1.0 - cos (x)/ dx = C - -------- + 0.5*x
 |                             4            
/                                           
$$\int \left(1.0 - \cos^{2}{\left(x \right)}\right)\, dx = C + 0.5 x - \frac{\sin{\left(2 x \right)}}{4}$$
The graph
The answer [src]
            /     ___________      ___________        ___________            \ /     ___________                      ___________      ___________\
            |    /       ___      /       ___        /       ___  /      ___\| |    /       ___  /        ___\       /       ___      /       ___ |
            |   /  1   \/ 2      /  5   \/ 5        /  1   \/ 2   |1   \/ 5 || |   /  1   \/ 2   |  1   \/ 5 |      /  1   \/ 2      /  5   \/ 5  |
            |  /   - - ----- *  /   - + -----  +   /   - + ----- *|- - -----||*|  /   - - ----- *|- - + -----| +   /   - + ----- *  /   - + ----- |
            \\/    2     4    \/    8     8      \/    2     4    \4     4  // \\/    2     4    \  4     4  /   \/    2     4    \/    8     8   /
0.2375*pi + ---------------------------------------------------------------------------------------------------------------------------------------
                                                                               2                                                                   
$$\frac{\left(\left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right) \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right) \left(\left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right) \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)}{2} + 0.2375 \pi$$
=
=
            /     ___________      ___________        ___________            \ /     ___________                      ___________      ___________\
            |    /       ___      /       ___        /       ___  /      ___\| |    /       ___  /        ___\       /       ___      /       ___ |
            |   /  1   \/ 2      /  5   \/ 5        /  1   \/ 2   |1   \/ 5 || |   /  1   \/ 2   |  1   \/ 5 |      /  1   \/ 2      /  5   \/ 5  |
            |  /   - - ----- *  /   - + -----  +   /   - + ----- *|- - -----||*|  /   - - ----- *|- - + -----| +   /   - + ----- *  /   - + ----- |
            \\/    2     4    \/    8     8      \/    2     4    \4     4  // \\/    2     4    \  4     4  /   \/    2     4    \/    8     8   /
0.2375*pi + ---------------------------------------------------------------------------------------------------------------------------------------
                                                                               2                                                                   
$$\frac{\left(\left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right) \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right) \left(\left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right) \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)}{2} + 0.2375 \pi$$
0.2375*pi + (sqrt(1/2 - sqrt(2)/4)*sqrt(5/8 + sqrt(5)/8) + sqrt(1/2 + sqrt(2)/4)*(1/4 - sqrt(5)/4))*(sqrt(1/2 - sqrt(2)/4)*(-1/4 + sqrt(5)/4) + sqrt(1/2 + sqrt(2)/4)*sqrt(5/8 + sqrt(5)/8))/2
Numerical answer [src]
0.785236871487634
0.785236871487634

    Use the examples entering the upper and lower limits of integration.