Mister Exam

Other calculators

Integral of dx/(ln(x))^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo           
  /           
 |            
 |     1      
 |  ------- dx
 |     3      
 |  log (x)   
 |            
/             
E             
$$\int\limits_{e}^{\infty} \frac{1}{\log{\left(x \right)}^{3}}\, dx$$
Integral(1/(log(x)^3), (x, E, oo))
The answer (Indefinite) [src]
  /                                      
 |                                       
 |    1             li(x)   -x - x*log(x)
 | ------- dx = C + ----- + -------------
 |    3               2            2     
 | log (x)                    2*log (x)  
 |                                       
/                                        
$$\int \frac{1}{\log{\left(x \right)}^{3}}\, dx = C + \frac{- x \log{\left(x \right)} - x}{2 \log{\left(x \right)}^{2}} + \frac{\operatorname{li}{\left(x \right)}}{2}$$
The graph
The answer [src]
     li(E)
oo - -----
       2  
$$- \frac{\operatorname{li}{\left(e \right)}}{2} + \infty$$
=
=
     li(E)
oo - -----
       2  
$$- \frac{\operatorname{li}{\left(e \right)}}{2} + \infty$$
oo - li(E)/2

    Use the examples entering the upper and lower limits of integration.