1 / | | 1 | -------- dx | 2 | 4*x - 9 | / 0
Integral(1/(4*x^2 - 9), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=4, c=-9, context=1/(4*x**2 - 9), symbol=x), False), (ArccothRule(a=1, b=4, c=-9, context=1/(4*x**2 - 9), symbol=x), x**2 > 9/4), (ArctanhRule(a=1, b=4, c=-9, context=1/(4*x**2 - 9), symbol=x), x**2 < 9/4)], context=1/(4*x**2 - 9), symbol=x)
Add the constant of integration:
The answer is:
// /2*x\ \ ||-acoth|---| | / || \ 3 / 2 | | ||------------ for x > 9/4| | 1 || 6 | | -------- dx = C + |< | | 2 || /2*x\ | | 4*x - 9 ||-atanh|---| | | || \ 3 / 2 | / ||------------ for x < 9/4| \\ 6 /
log(2) log(5/2) - ------ - -------- 12 12
=
log(2) log(5/2) - ------ - -------- 12 12
-log(2)/12 - log(5/2)/12
Use the examples entering the upper and lower limits of integration.