Integral of dx/2cosx+3sinx dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin(x)dx=3∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: −3cos(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫1⋅21cos(x)dx=2∫cos(x)dx
-
The integral of cosine is sine:
∫cos(x)dx=sin(x)
So, the result is: 2sin(x)
The result is: 2sin(x)−3cos(x)
-
Add the constant of integration:
2sin(x)−3cos(x)+constant
The answer is:
2sin(x)−3cos(x)+constant
The answer (Indefinite)
[src]
/
|
| / 1 \ sin(x)
| |1*-*cos(x) + 3*sin(x)| dx = C + ------ - 3*cos(x)
| \ 2 / 2
|
/
∫(3sin(x)+1⋅21cos(x))dx=C+2sin(x)−3cos(x)
The graph
sin(1)
3 + ------ - 3*cos(1)
2
−3cos(1)+2sin(1)+3
=
sin(1)
3 + ------ - 3*cos(1)
2
−3cos(1)+2sin(1)+3
Use the examples entering the upper and lower limits of integration.