Mister Exam

Other calculators


dx/2cosx+3sinx

Integral of dx/2cosx+3sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  /  1                  \   
 |  |1*-*cos(x) + 3*sin(x)| dx
 |  \  2                  /   
 |                            
/                             
0                             
01(3sin(x)+112cos(x))dx\int\limits_{0}^{1} \left(3 \sin{\left(x \right)} + 1 \cdot \frac{1}{2} \cos{\left(x \right)}\right)\, dx
Integral(1*cos(x)/2 + 3*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3sin(x)dx=3sin(x)dx\int 3 \sin{\left(x \right)}\, dx = 3 \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: 3cos(x)- 3 \cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      112cos(x)dx=cos(x)dx2\int 1 \cdot \frac{1}{2} \cos{\left(x \right)}\, dx = \frac{\int \cos{\left(x \right)}\, dx}{2}

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      So, the result is: sin(x)2\frac{\sin{\left(x \right)}}{2}

    The result is: sin(x)23cos(x)\frac{\sin{\left(x \right)}}{2} - 3 \cos{\left(x \right)}

  2. Add the constant of integration:

    sin(x)23cos(x)+constant\frac{\sin{\left(x \right)}}{2} - 3 \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

sin(x)23cos(x)+constant\frac{\sin{\left(x \right)}}{2} - 3 \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 | /  1                  \          sin(x)           
 | |1*-*cos(x) + 3*sin(x)| dx = C + ------ - 3*cos(x)
 | \  2                  /            2              
 |                                                   
/                                                    
(3sin(x)+112cos(x))dx=C+sin(x)23cos(x)\int \left(3 \sin{\left(x \right)} + 1 \cdot \frac{1}{2} \cos{\left(x \right)}\right)\, dx = C + \frac{\sin{\left(x \right)}}{2} - 3 \cos{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
    sin(1)           
3 + ------ - 3*cos(1)
      2              
3cos(1)+sin(1)2+3- 3 \cos{\left(1 \right)} + \frac{\sin{\left(1 \right)}}{2} + 3
=
=
    sin(1)           
3 + ------ - 3*cos(1)
      2              
3cos(1)+sin(1)2+3- 3 \cos{\left(1 \right)} + \frac{\sin{\left(1 \right)}}{2} + 3
Numerical answer [src]
1.79982857479953
1.79982857479953
The graph
Integral of dx/2cosx+3sinx dx

    Use the examples entering the upper and lower limits of integration.