Mister Exam

Other calculators

Integral of du/(u+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  E         
  /         
 |          
 |    1     
 |  ----- du
 |  u + 1   
 |          
/           
1           
$$\int\limits_{1}^{e} \frac{1}{u + 1}\, du$$
Integral(1/(u + 1), (u, 1, E))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is .

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                         
 |                          
 |   1                      
 | ----- du = C + log(u + 1)
 | u + 1                    
 |                          
/                           
$$\int \frac{1}{u + 1}\, du = C + \log{\left(u + 1 \right)}$$
The graph
The answer [src]
-log(2) + log(1 + E)
$$- \log{\left(2 \right)} + \log{\left(1 + e \right)}$$
=
=
-log(2) + log(1 + E)
$$- \log{\left(2 \right)} + \log{\left(1 + e \right)}$$
-log(2) + log(1 + E)
Numerical answer [src]
0.620114506958278
0.620114506958278

    Use the examples entering the upper and lower limits of integration.