Mister Exam

Other calculators

Integral of dt/(t(ln(t+1)-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                      
  /                      
 |                       
 |          1            
 |  ------------------ dt
 |  t*(log(t + 1) - 1)   
 |                       
/                        
0                        
$$\int\limits_{0}^{0} \frac{1}{t \left(\log{\left(t + 1 \right)} - 1\right)}\, dt$$
Integral(1/(t*(log(t + 1) - 1)), (t, 0, 0))
The answer (Indefinite) [src]
  /                              /                      
 |                              |                       
 |         1                    |          1            
 | ------------------ dt = C +  | ------------------- dt
 | t*(log(t + 1) - 1)           | t*(-1 + log(1 + t))   
 |                              |                       
/                              /                        
$$\int \frac{1}{t \left(\log{\left(t + 1 \right)} - 1\right)}\, dt = C + \int \frac{1}{t \left(\log{\left(t + 1 \right)} - 1\right)}\, dt$$
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.