Mister Exam

Other calculators


dx/(sin^2x*cos^4x)
  • How to use it?

  • Integral of d{x}:
  • Integral of -2*x Integral of -2*x
  • Integral of -2x Integral of -2x
  • Integral of 1/(x²+1)² Integral of 1/(x²+1)²
  • Integral of πdx
  • Identical expressions

  • dx/(sin^2x*cos^4x)
  • dx divide by ( sinus of squared x multiply by co sinus of e of to the power of 4x)
  • dx/(sin2x*cos4x)
  • dx/sin2x*cos4x
  • dx/(sin²x*cos⁴x)
  • dx/(sin to the power of 2x*cos to the power of 4x)
  • dx/(sin^2xcos^4x)
  • dx/(sin2xcos4x)
  • dx/sin2xcos4x
  • dx/sin^2xcos^4x
  • dx divide by (sin^2x*cos^4x)

Integral of dx/(sin^2x*cos^4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |           1          
 |  1*--------------- dx
 |       2       4      
 |    sin (x)*cos (x)   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sin^{2}{\left(x \right)} \cos^{4}{\left(x \right)}}\, dx$$
Integral(1/(sin(x)^2*cos(x)^4), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                          
 |                                                                           
 |          1                  sin(x)         1           4*sin(x)   8*sin(x)
 | 1*--------------- dx = C + ------- - -------------- + --------- + --------
 |      2       4                5         5                  3      3*cos(x)
 |   sin (x)*cos (x)          cos (x)   cos (x)*sin(x)   3*cos (x)           
 |                                                                           
/                                                                            
$${{\tan ^3x+6\,\tan x}\over{3}}-{{1}\over{\tan x}}$$
The graph
The answer [src]
oo
$${\it \%a}$$
=
=
oo
$$\infty$$
Numerical answer [src]
1.3793236779486e+19
1.3793236779486e+19
The graph
Integral of dx/(sin^2x*cos^4x) dx

    Use the examples entering the upper and lower limits of integration.