Mister Exam

Integral of dt/lnt dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3            
 x             
  /            
 |             
 |      1      
 |  1*------ dt
 |    log(t)   
 |             
/              
 2             
x              
$$\int\limits_{x^{2}}^{x^{3}} 1 \cdot \frac{1}{\log{\left(t \right)}}\, dt$$
Integral(1/log(t), (t, x^2, x^3))
Detail solution

    LiRule(a=1, b=0, context=1/log(t), symbol=t)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                       
 |                        
 |     1                  
 | 1*------ dt = C + li(t)
 |   log(t)               
 |                        
/                         
$$-\Gamma\left(0 , -\log t\right)$$
The answer [src]
    / 2\     / 3\
- li\x / + li\x /
$$- \operatorname{li}{\left(x^{2} \right)} + \operatorname{li}{\left(x^{3} \right)}$$
=
=
    / 2\     / 3\
- li\x / + li\x /
$$- \operatorname{li}{\left(x^{2} \right)} + \operatorname{li}{\left(x^{3} \right)}$$

    Use the examples entering the upper and lower limits of integration.