Mister Exam

Other calculators


dt/(5-16t^2)

Integral of dt/(5-16t^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |        1       
 |  1*--------- dt
 |            2   
 |    5 - 16*t    
 |                
/                 
0                 
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{- 16 t^{2} + 5}\, dt$$
Integral(1/(5 - 16*t^2), (t, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Integrate term-by-term:

      1. The integral of is .

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      The result is:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                              /     /      ___\      /      ___\\
  /                       ___ |     |    \/ 5 |      |    \/ 5 ||
 |                      \/ 5 *|- log|t + -----| + log|t - -----||
 |       1                    \     \      4  /      \      4  //
 | 1*--------- dt = C - -----------------------------------------
 |           2                              40                   
 |   5 - 16*t                                                    
 |                                                               
/                                                                
$$-{{\log \left({{32\,t-8\,\sqrt{5}}\over{32\,t+8\,\sqrt{5}}}\right) }\over{8\,\sqrt{5}}}$$
The graph
The answer [src]
nan
$$-{{\log \left({{11}\over{8\,\sqrt{5}+21}}\right)}\over{8\,\sqrt{5} }}$$
=
=
nan
$$\text{NaN}$$
Numerical answer [src]
-0.220245899518467
-0.220245899518467
The graph
Integral of dt/(5-16t^2) dx

    Use the examples entering the upper and lower limits of integration.